Class 12 Exam  >  Class 12 Questions  >  For which of the following parameters the str... Start Learning for Free
For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour)      [AIEEE-2004]
  • a)
    Heat of vaporization
  • b)
    Vapour pressure at the same temperature
  • c)
    Boiling points
  • d)
    Gaseous densities at the same temperature and pressure
Correct answer is option 'D'. Can you explain this answer?
Verified Answer
For which of the following parameters the structural isomers C2H5OH an...
Vapor density = Molecular weight/2
As both the compounds have same molecular weights, both will have the same vapour density. Hence, gaseous density of both ethanol and dimethyl ether would be same under identical conditions of temperature and pressure. The rest of these three properties; Vapour pressure, boiling point and heat of vaporization will differ as ethanol has hydrogen bonding whereas ether does not.
View all questions of this test
Most Upvoted Answer
For which of the following parameters the structural isomers C2H5OH an...
Vapor density = Molecular weight/2
As both the compounds have same molecular weights, both will have the same vapour density. Hence, gaseous density of both ethanol and dimethyl ether would be same under identical conditions of temperature and pressure. The rest of these three properties; Vapour pressure, boiling point and heat of vaporization will differ as ethanol has hydrogen bonding whereas ether does not.
Free Test
Community Answer
For which of the following parameters the structural isomers C2H5OH an...
Understanding Structural Isomers
Structural isomers, like C2H5OH (ethanol) and CH3OCH3 (dimethyl ether), have the same molecular formula but different structures and properties. Analyzing their physical properties helps determine which parameters they share.
Comparison of Physical Properties
- Heat of Vaporization
- Different molecular structures lead to varying intermolecular forces.
- Ethanol has hydrogen bonding, while dimethyl ether has dipole-dipole interactions.
- Thus, their heat of vaporization differs.
- Vapor Pressure at the Same Temperature
- Vapor pressure is influenced by intermolecular forces.
- Ethanol's stronger hydrogen bonding results in lower vapor pressure compared to dimethyl ether.
- Therefore, they do not share the same vapor pressure.
- Boiling Points
- Boiling points depend on intermolecular attractions.
- Ethanol's hydrogen bonds cause a higher boiling point than dimethyl ether's weaker forces.
- Hence, their boiling points are different.
- Gaseous Densities at the Same Temperature and Pressure
- Density of gases is determined by the number of moles in a given volume.
- Both compounds have the same molecular formula (C2H6O) and thus the same molar mass.
- Under ideal gas conditions (same temperature and pressure), they will exhibit the same gaseous densities.
Conclusion
In summary, the only parameter for which C2H5OH and CH3OCH3 would have the same values is the gaseous densities at the same temperature and pressure. This is due to their identical molecular weights, despite their differing structures and physical properties.
Explore Courses for Class 12 exam

Similar Class 12 Doubts

Read the following text and answer the following questions on the basis of the same:Super magnetThe term super magnet is a broad term and encompasses several families of rare-earth magnets that include seventeen elements in the periodic table; namely scandium, yttrium, and the fifteen lanthanides. These elements can be magnetized, but have Curie temperatures below room temperature. This means that in their pure form, their magnetism only appears at low temperatures. However, when they form compounds with transition metals such as iron, nickel, cobalt, etc. Curie temperature rises well above room temperature and they can be used effectively at higher temperatures as well. The main advantage they have over conventional magnets is that their greater strength allows for smaller, lighter magnets to be used. Super magnets are of two categories: (i) N eodymium magnet: These are made from an alloy of neodymium, iron, and boron. This material is currently the strongest known type of permanent magnet. It is typically used in the construction of head actuators in computer hard drives and has many electronic applications, such as electric motors, appliances, and magnetic resonance imaging (MRI). (ii) Samarium-cobalt magnet: These are made from an alloy of samarium and cobalt. This second strongest type of rare Earth magnet is also used in electronic motors, turbo-machinery, and because of its high temperature range tolerance may also have many applications for space travel, such as cryogenics and heat resistant machinery. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder. Since super magnets are about 10 times stronger than ordinary magnets, safe distance should be maintained otherwise these may damage mechanical watch, CRT monitor, pacemaker, credit cards, magnetically stored media etc.These types of magnets are hazardous for health also. The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones. Neodymium permanent magnets lose their magnetism 5% every 100 years. So, in the truest sense Neodymium magnets may be considered as a permanent magnet.Curie point of pure rare Earth elements is

Read the following text and answer the following questions on the basis of the same:Super magnet The term super magnet is a broad term and encompasses several families of rare-earth magnets that include seventeen elements in the periodic table; namely scandium, yttrium, and the fifteen lanthanides. These elements can be magnetized, but have Curie temperatures below room temperature. This means that in their pure form, their magnetism only appears at low temperatures. However, when they form compounds with transition metals such as iron, nickel, cobalt, etc. Curie temperature rises well above room temperature and they can be used effectively at higher temperatures as well. The main advantage they have over conventional magnets is that their greater strength allows for smaller, lighter magnets to be used. Super magnets are of two categories: (i) Neodymium magnet: These are made from an alloy of neodymium, iron, and boron. This material is currently the strongest known type of permanent magnet. It is typically used in the construction of head actuators in computer hard drives and has many electronic applications, such as electric motors, appliances, and magnetic resonance imaging (MRI). (ii) Samarium-cobalt magnet: These are made from an alloy of samarium and cobalt. This second strongest type of rare Earth magnet is also used in electronic motors, turbo-machinery, and because of its high temperature range tolerance may also have many applications for space travel, such as cryogenics and heat resistant machinery. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder. Since super magnets are about 10 times stronger than ordinary magnets, safe distance should be maintained otherwise these may damage mechanical watch, CRT monitor, pacemaker, credit cards, magnetically stored media etc. These types of magnets are hazardous for health also. The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones. Neodymium permanent magnets lose their magnetism 5% every 100 years. So, in the truest sense Neodymium magnets may be considered as a permanent magnet.Super magnets are about _____ time stronger than ordinary magnets.

Read the following text and answer the following questions on the basis of the same:Super magnet The term super magnet is a broad term and encompasses several families of rare-earth magnets that include seventeen elements in the periodic table; namely scandium, yttrium, and the fifteen lanthanides. These elements can be magnetized, but have Curie temperatures below room temperature. This means that in their pure form, their magnetism only appears at low temperatures. However, when they form compounds with transition metals such as iron, nickel, cobalt, etc. Curie temperature rises well above room temperature and they can be used effectively at higher temperatures as well. The main advantage they have over conventional magnets is that their greater strength allows for smaller, lighter magnets to be used. Super magnets are of two categories:(i) Neodymium magnet: These are made from an alloy of neodymium, iron, and boron. This material is currently the strongest known type of permanent magnet. It is typically used in the construction of head actuators in computer hard drives and has many electronic applications, such as electric motors, appliances, and magnetic resonance imaging (MRI).(ii) Samarium-cobalt magnet: These are made from an alloy of samarium and cobalt. This second strongest type of rare Earth magnet is also used in electronic motors, turbo-machinery, and because of its high temperature range tolerance may also have many applications for space travel, such as cryogenics and heat resistant machinery. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder. Since super magnets are about 10 times stronger than ordinary magnets, safe distance should be maintained otherwise these may damage mechanical watch, CRT monitor, pacemaker, credit cards, magnetically stored media etc. These types of magnets are hazardous for health also. The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones. Neodymium permanent magnets lose their magnetism 5% every 100 years. So, in the truest sense Neodymium magnets may be considered as a permanent magnet.Neodymium and Samarium are

Read the following text and answer the following questions on the basis of the same: Super magnet The term super magnet is a broad term and encompasses several families of rare-earth magnets that include seventeen elements in the periodic table; namely scandium, yttrium, and the fifteen lanthanides. These elements can be magnetized, but have Curie temperatures below room temperature. This means that in their pure form, their magnetism only appears at low temperatures. However, when they form compounds with transition metals such as iron, nickel, cobalt, etc. Curie temperature rises well above room temperature and they can be used effectively at higher temperatures as well. The main advantage they have over conventional magnets is that their greater strength allows for smaller, lighter magnets to be used. Super magnets are of two categories: (i) Neodymium magnet: These are made from an alloy of neodymium, iron, and boron. This material is currently the strongest known type of permanent magnet. It is typically used in the construction of head actuators in computer hard drives and has many electronic applications, such as electric motors, appliances, and magnetic resonance imaging (MRI). (ii) Samarium-cobalt magnet: These are made from an alloy of samarium and cobalt. This second strongest type of rare Earth magnet is also used in electronic motors, turbo-machinery, and because of its high temperature range tolerance may also have many applications for space travel, such as cryogenics and heat resistant machinery. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder. Since super magnets are about 10 times stronger than ordinary magnets, safe distance should be maintained otherwise these may damage mechanical watch, CRT monitor, pacemaker, credit cards, magnetically stored media etc. These types of magnets are hazardous for health also. The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones. Neodymium permanent magnets lose their magnetism 5% every 100 years. So, in the truest sense Neodymium magnets may be considered as a permanent magnet.Neodymium permanent magnets lose their magnetism ____ % every 100 years.

For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer?
Question Description
For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer? for Class 12 2025 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer? covers all topics & solutions for Class 12 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer?.
Solutions for For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer?, a detailed solution for For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer? has been provided alongside types of For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values ? (Assume ideal behaviour) [AIEEE-2004]a)Heat of vaporizationb)Vapour pressure at the same temperaturec)Boiling pointsd)Gaseous densities at the same temperature and pressureCorrect answer is option 'D'. Can you explain this answer? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev