JEE Exam  >  JEE Questions  >  If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x... Start Learning for Free
If y=sin((1+x2)/(1-x2)), (dy/dx)=
  • a)
    [(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]
  • b)
    [(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]
  • c)
    [(x)/(1-x2)]. cos[(1+x2)/(1-x2)]
  • d)
    4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)...
Given:
y = sin((1 + x²) / (1 − x²))
We are to find dy/dx.
Step 1: Identify inner and outer functions
Let:
u = (1 + x²) / (1 − x²) ← inner function
y = sin(u) ← outer function
Step 2: Differentiate using chain rule
Using the chain rule:
dy/dx = dy/du × du/dx
We know:
dy/du = cos(u)
Step 3: Differentiate u
To find du/dx for u = (1 + x²) / (1 − x²), use the quotient rule:
du/dx = [(1 − x²)(d/dx(1 + x²)) − (1 + x²)(d/dx(1 − x²))] / (1 − x²)²
Now compute derivatives:
d/dx(1 + x²) = 2x
d/dx(1 − x²) = −2x
So:
du/dx = [(1 − x²)(2x) − (1 + x²)(−2x)] / (1 − x²)²
Simplify numerator:
= (1 − x²)(2x) + (1 + x²)(2x)
= 2x(1 − x² + 1 + x²)
= 2x(2)
= 4x
So:
du/dx = 4x / (1 − x²)²
Step 4: Combine the results
dy/dx = cos((1 + x²) / (1 − x²)) × 4x / (1 − x²)²
Final Answer:
dy/dx = 4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²
Free Test
Community Answer
If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)...
Understanding the Function
We start with the function:
y = sin((1 + x²) / (1 - x²))
To find dy/dx, we will use the chain rule and quotient rule of differentiation.
Applying the Chain Rule
1. The outer function is sin(u), where u = (1 + x²) / (1 - x²).
2. The derivative of sin(u) is cos(u) * du/dx.
Finding du/dx
Now we need to differentiate u:
- u = (1 + x²) / (1 - x²)
Using the quotient rule:
- If f = 1 + x² and g = 1 - x², then:
du/dx = (g * f' - f * g') / g²
Where:
- f' = 2x (derivative of f)
- g' = -2x (derivative of g)
Substituting:
du/dx = [(1 - x²)(2x) - (1 + x²)(-2x)] / (1 - x²)²
This simplifies to:
du/dx = [2x(1 - x² + 1 + x²)] / (1 - x²)²
Thus:
du/dx = [4x] / (1 - x²)²
Final Derivative Calculation
Now substituting back into dy/dx:
dy/dx = cos((1 + x²) / (1 - x²)) * du/dx
Therefore, we have:
dy/dx = cos((1 + x²) / (1 - x²)) * [4x / (1 - x²)²]
Conclusion
Thus, the final derivative is:
dy/dx = (4x * cos((1 + x²) / (1 - x²))) / (1 - x²)²
This matches option 'D', confirming its correctness.
Explore Courses for JEE exam
Question Description
If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer? for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer?.
Solutions for If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer?, a detailed solution for If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)[(x)/(1-x2)2]. cos[(1+x2)/(1-x2)]c)[(x)/(1-x2)]. cos[(1+x2)/(1-x2)]d)4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev