If y=sin((1+x2)/(1-x2)), (dy/dx)=a)[(4x)/(1-x2)]. cos[(1+x2)/(1-x2)]b)...
Given:
y = sin((1 + x²) / (1 − x²))
We are to find dy/dx.
Step 1: Identify inner and outer functions
Let:
u = (1 + x²) / (1 − x²) ← inner function
y = sin(u) ← outer function
Step 2: Differentiate using chain rule
Using the chain rule:
dy/dx = dy/du × du/dx
We know:
dy/du = cos(u)
Step 3: Differentiate u
To find du/dx for u = (1 + x²) / (1 − x²), use the quotient rule:
du/dx = [(1 − x²)(d/dx(1 + x²)) − (1 + x²)(d/dx(1 − x²))] / (1 − x²)²
Now compute derivatives:
d/dx(1 + x²) = 2x
d/dx(1 − x²) = −2x
So:
du/dx = [(1 − x²)(2x) − (1 + x²)(−2x)] / (1 − x²)²
Simplify numerator:
= (1 − x²)(2x) + (1 + x²)(2x)
= 2x(1 − x² + 1 + x²)
= 2x(2)
= 4x
So:
du/dx = 4x / (1 − x²)²
Step 4: Combine the results
dy/dx = cos((1 + x²) / (1 − x²)) × 4x / (1 − x²)²
Final Answer:
dy/dx = 4x × cos((1 + x²) / (1 − x²)) / (1 − x²)²