If f(x) =then (1/5) f(0) is equal toa)1b)0c)2d)6Correct answer is opti...

R₂ → R₂ - R₁, R₃ → R₃ - R₁

On applying determinant formula, we get
2cos⁴x * (0-(-9)) - 2sin⁴x * (-9-0) + (3 + sin²2x) * (9-0)
2cos⁴x * 9 - 2sin⁴x * (-9) + (3 + sin²2x) * 9
18cos⁴x +18 sin⁴x + (3 + sin²2x) * 9
18cos⁴x + 18sin⁴x + 27 + 9sin²2x
We are to find:
(1/5)·f'(0)
Step 1: Differentiate f(x)
We differentiate each term with respect to x:
Term 1: 18cos⁴x
Use the chain rule:
d/dx [cos⁴x] = 4cos³x * (−sinx) = −4cos³x sinx
So:
d/dx [18cos⁴x] = 18 × (−4cos³x sinx) = −72cos³x sinx
Term 2: 18sin⁴x
d/dx [sin⁴x] = 4sin³x * cosx
So:
d/dx [18sin⁴x] = 18 × 4sin³x cosx = 72sin³x cosx
Term 3: 27 → derivative is 0
Term 4: 9sin²(2x)
Use chain rule:
d/dx [sin²(2x)] = 2sin(2x) * cos(2x) * 2 = 4sin(2x)cos(2x)
So:
d/dx [9sin²(2x)] = 9 × 4sin(2x)cos(2x) = 36sin(2x)cos(2x)
Step 2: Combine derivatives
So,
f′(x) = −72cos³x sinx + 72sin³x cosx + 36sin(2x)cos(2x)
Step 3: Evaluate f′(0)
Plug in x = 0:
-
sin(0) = 0
-
cos(0) = 1
-
sin(2×0) = 0
-
cos(2×0) = 1
Now evaluate each term:
-
−72cos³(0) sin(0) = −72(1)(0) = 0
-
72sin³(0) cos(0) = 72(0)(1) = 0
-
36sin(0)cos(0) = 36(0)(1) = 0
So,
f′(0) = 0
Step 4: Final Answer
(1/5) × f′(0) = (1/5) × 0 = 0