If then I is equal toa)b)c)d)Correct answer is option 'D'. Can you ex...
Step 1: Try a substitution
Let v = √(1 + x³)
Then,
v² = 1 + x³ ⇒ x³ = v² - 1
Now differentiate both sides of v² = 1 + x³:
2v dv = 3x² dx ⇒ x² dx = (2v / 3) dv
Now rewrite the integral:
I = ∫ (x³ / √(1 + x³)) dx = ∫ [(v² - 1) / v] * (2v / 3) dv
Simplify:
I = (2 / 3) ∫ (v² - 1) dv
Step 2: Integrate
I = (2 / 3) ∫ (v² - 1) dv = (2 / 3) * [ (v³ / 3) - v ] + C
I = (2 / 9) v³ - (2 / 3) v + C
Now substitute back v = √(1 + x³):
I = (2 / 9) * (1 + x³)3/2 - (2 / 3) * (1 + x³)1/2 + C
Final Answer:
I = (2 / 9)(1 + x³)3/2 - (2 / 3)(1 + x³)1/2 + C
This matches option d, so the correct answer is:
Option d)