The language a)regularb)context-free but not regularc)context-sensitiv...
Language is not regular bcoz we need to match count of c's is equal to count of b's + count of a's
and that can implement by PDA
∂(q0,a,^)= (q0,a) [ push a in stack, as per language a comes first]
∂(q0,a,a)= (q0,aa) [push all a's into stack]
∂(q0,b,a) = (q1,ba) [push b in stack, state change to q1 that sure b comes after a]
∂(q1,b,b)=(q1,bb) [push all b's in stack]
∂(q1,c,b) = (q2,^) [ pop one b for one c]
∂(q2,c,b) = (q2,c) [ pop one b's for each c and continue same ]
∂(q2,c,a) = (q3,^) [ pop one a for one c , when there is no more b in stack]
∂(q3,c,a) = (q3,^) [pop one a for each c and continue same]
∂(q3,^,^) = (qf,^) [ if sum of c's is sum of a's and b's then stack will be empty when there is no c in input]
Note :1. state changes make sure b's comes after a and c's comes after b's]