CA Foundation Exam  >  CA Foundation Questions  >  As the sample size increases, standard errora... Start Learning for Free
As the sample size increases, standard error
  • a)
    Increases
  • b)
    Decreases.
  • c)
    Remains constant.
  • d)
    Decreases proportionately.
Correct answer is option 'B'. Can you explain this answer?
Verified Answer
As the sample size increases, standard errora)Increasesb)Decreases.c)R...
Increasing the sample size decreases the width of confidence intervals, because it decreases the standard error.
View all questions of this test
Most Upvoted Answer
As the sample size increases, standard errora)Increasesb)Decreases.c)R...
Standard Error and Sample Size Relationship

Introduction:
The standard error is a measure of the variability or dispersion of a statistic, such as the mean, in a sample. It quantifies the amount of uncertainty or error that is associated with the estimate of the population parameter. The standard error is calculated by dividing the standard deviation of the sample by the square root of the sample size.

Explanation:
The relationship between the sample size and the standard error is inversely proportional. As the sample size increases, the standard error decreases.

Reasoning:
1. Definition of Standard Error: The standard error is calculated as the standard deviation of the sample divided by the square root of the sample size. Therefore, the standard error is directly influenced by the sample size.

2. Decreased Variability: As the sample size increases, the variability or dispersion of the data decreases. This is because larger sample sizes provide more information about the population, resulting in a more accurate estimate of the population parameter. With less variability, the standard error decreases.

3. More Precise Estimate: A larger sample size provides a more precise estimate of the population parameter. The standard error measures the precision of the estimate, and as the sample size increases, the standard error decreases, indicating a more precise estimate.

4. Law of Large Numbers: The law of large numbers states that as the sample size increases, the sample mean converges to the population mean. This means that larger sample sizes provide more accurate estimates of the population parameter, resulting in smaller standard errors.

5. Statistical Power: Increasing the sample size improves the statistical power of a study. Statistical power is the ability to detect a true effect or difference when it exists. With a larger sample size, the study is more likely to detect small but important differences, leading to smaller standard errors.

Conclusion:
In summary, as the sample size increases, the standard error decreases. This is because larger sample sizes decrease the variability of the data, provide more precise estimates, adhere to the law of large numbers, and improve the statistical power of a study.
Explore Courses for CA Foundation exam
As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer?
Question Description
As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer? for CA Foundation 2024 is part of CA Foundation preparation. The Question and answers have been prepared according to the CA Foundation exam syllabus. Information about As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for CA Foundation 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer?.
Solutions for As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for CA Foundation. Download more important topics, notes, lectures and mock test series for CA Foundation Exam by signing up for free.
Here you can find the meaning of As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer?, a detailed solution for As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice As the sample size increases, standard errora)Increasesb)Decreases.c)Remains constant.d)Decreases proportionately.Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice CA Foundation tests.
Explore Courses for CA Foundation exam

Top Courses for CA Foundation

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev