JEE Exam  >  JEE Questions  >  sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2... Start Learning for Free
sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A)
Most Upvoted Answer
sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A)
Explanation:

Step 1: Rewrite sin^3 A - cos^3 A as (sinA - cosA)(sin^2 A + sinA cosA + cos^2 A) using the identity a^3 - b^3 = (a-b)(a^2 + ab + b^2)

Step 2: Simplify sin^2 A + sinA cosA + cos^2 A as 1 - cos^2 A + sinA cosA + cos^2 A using the identity sin^2 A + cos^2 A = 1

Step 3: Simplify 1 - cos^2 A + sinA cosA + cos^2 A as sin^2 A + sinA cosA + cos^2 A - cos^2 A + cos^2 A

Step 4: Combine sin^2 A - cos^2 A and sinA cosA + cos^2 A - cos^2 A to get sin^2 A - cos^2 A + sinA cosA

Step 5: Factor sin^2 A - cos^2 A as (sinA + cosA)(sinA - cosA)

Step 6: Substitute sin^2 A - cos^2 A with (sinA + cosA)(sinA - cosA) in the expression sin^2 A - cos^2 A + sinA cosA to get (sinA + cosA)(sinA - cosA) + sinA cosA

Step 7: Simplify (sinA + cosA)(sinA - cosA) + sinA cosA to (sinA + cosA)^2 - sinA cosA using the identity (a+b)^2 = a^2 + 2ab + b^2

Step 8: Substitute (sinA + cosA)^2 with sin^2 A + cos^2 A + 2sinA cosA in the expression (sinA + cosA)^2 - sinA cosA to get sin^2 A + cos^2 A + 2sinA cosA - sinA cosA

Step 9: Simplify sin^2 A + cos^2 A + 2sinA cosA - sinA cosA as sin^2 A + cos^2 A + sinA cosA

Step 10: Substitute sin^2 A + cos^2 A with 1 in the expression sin^2 A + cos^2 A + sinA cosA to get 1 + sinA cosA

Step 11: Substitute 1 + sinA cosA with (1 - sin^2 A cos^2 A) + sinA cosA using the identity 1 - sin^2 A = cos^2 A and 1 - cos^2 A = sin^2 A

Step 12: Simplify (1 - sin^2 A cos^2 A) + sinA cosA as 1 - sin^2 A cos^2 A + sinA cosA

Step 13: Factor 1 - sin^2 A cos^2 A + sinA cosA
Community Answer
sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A)
Explore Courses for JEE exam
sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A)
Question Description
sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A) for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A) covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A).
Solutions for sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A) in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A) defined & explained in the simplest way possible. Besides giving the explanation of sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A), a detailed solution for sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A) has been provided alongside types of sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A) theory, EduRev gives you an ample number of questions to practice sin^3 A- cos^3 A = (sin^2 A-cos^2 A)(1-2sin^2 A cos^2A) tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev