JEE Exam  >  JEE Questions  >  The integral of tan4x is:a)b)c)d)Correct answ... Start Learning for Free
The integral of tan4x is:
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you...
Begin by rewriting  ∫tan4xdx as ∫tan2xtan2xdx.      
Now we can apply the Pythagorean Identity,  tan2x+1=sec2x,                                         or tan2x=sec2x−1

∫tan2x tan2x dx = ∫(sec2x−1)tan2xdx

Distributing the tan2x:
             = ∫sec2xtan2x − tan2xdx
Applying the sum rule:
                = ∫sec2xtan2xdx − ∫tan2xdx
We'll evaluate these integrals one by one.
First Integral 
This one is solved using a 
Let u = tanx


Applying the substitution,
Because u = tanx,
Second Integral
Since we don't really know what  ∫tan2xdx is by just looking at it, try applying the tan2x = sec2x−1 
identity again:
∫tan2xdx = ∫(sec2x−1)dx
Using the sum rule, the integral boils down to:
∫sec2xdx − ∫1dx
The first of these,  ∫sec2xdx, is just tanx + C.
The second one, the so-called "perfect integral", is simply x+C.
Putting it all together, we can say:
∫tan2xdx = tanx + C − x + C
And because C+C is just another arbitrary constant, we can combine it into a general constant C:
∫tan2xdx = tanx − x + C
Combining the two results, we have:
∫tan4xdx=∫sec2xtan2xdx−∫tan2xdx
=(tan3x/3 + C) − (tanx − x + C)
=tan3x/3 − tanx + x + C
Again, because C+C is a constant, we can join them into one C.
View all questions of this test
Most Upvoted Answer
The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you...
Begin by rewriting  ∫tan4xdx as ∫tan2xtan2xdx.      
Now we can apply the Pythagorean Identity,  tan2x+1=sec2x,                                         or tan2x=sec2x−1

∫tan2x tan2x dx = ∫(sec2x−1)tan2xdx

Distributing the tan2x:
             = ∫sec2xtan2x − tan2xdx
Applying the sum rule:
                = ∫sec2xtan2xdx − ∫tan2xdx
We'll evaluate these integrals one by one.
First Integral 
This one is solved using a 
Let u = tanx


Applying the substitution,
Because u = tanx,
Second Integral
Since we don't really know what  ∫tan2xdx is by just looking at it, try applying the tan2x = sec2x−1 
identity again:
∫tan2xdx = ∫(sec2x−1)dx
Using the sum rule, the integral boils down to:
∫sec2xdx − ∫1dx
The first of these,  ∫sec2xdx, is just tanx + C.
The second one, the so-called "perfect integral", is simply x+C.
Putting it all together, we can say:
∫tan2xdx = tanx + C − x + C
And because C+C is just another arbitrary constant, we can combine it into a general constant C:
∫tan2xdx = tanx − x + C
Combining the two results, we have:
∫tan4xdx=∫sec2xtan2xdx−∫tan2xdx
=(tan3x/3 + C) − (tanx − x + C)
=tan3x/3 − tanx + x + C
Again, because C+C is a constant, we can join them into one C.
Free Test
Community Answer
The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you...
Begin by rewriting  ∫tan4xdx as ∫tan2xtan2xdx.      
Now we can apply the Pythagorean Identity,  tan2x+1=sec2x,                                         or tan2x=sec2x−1

∫tan2x tan2x dx = ∫(sec2x−1)tan2xdx

Distributing the tan2x:
             = ∫sec2xtan2x − tan2xdx
Applying the sum rule:
                = ∫sec2xtan2xdx − ∫tan2xdx
We'll evaluate these integrals one by one.
First Integral 
This one is solved using a 
Let u = tanx


Applying the substitution,
Because u = tanx,
Second Integral
Since we don't really know what  ∫tan2xdx is by just looking at it, try applying the tan2x = sec2x−1 
identity again:
∫tan2xdx = ∫(sec2x−1)dx
Using the sum rule, the integral boils down to:
∫sec2xdx − ∫1dx
The first of these,  ∫sec2xdx, is just tanx + C.
The second one, the so-called "perfect integral", is simply x+C.
Putting it all together, we can say:
∫tan2xdx = tanx + C − x + C
And because C+C is just another arbitrary constant, we can combine it into a general constant C:
∫tan2xdx = tanx − x + C
Combining the two results, we have:
∫tan4xdx=∫sec2xtan2xdx−∫tan2xdx
=(tan3x/3 + C) − (tanx − x + C)
=tan3x/3 − tanx + x + C
Again, because C+C is a constant, we can join them into one C.
Explore Courses for JEE exam
Question Description
The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer? for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer?.
Solutions for The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer?, a detailed solution for The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice The integral of tan4x is:a)b)c)d)Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev