The oxidation of toluene to benzoic acid can be stopped at the aldehyd...
Etard is specific reaction for conversion of toluene to Benzaldehyde.
View all questions of this test
The oxidation of toluene to benzoic acid can be stopped at the aldehyd...
Etard reaction
The oxidation of toluene to benzoic acid can be stopped at the aldehyde stage by using the Etard reaction. The Etard reaction is a chemical reaction that involves the oxidation of aromatic hydrocarbons using chromyl chloride (CrO2Cl2) as the oxidizing agent. This reaction is commonly used to convert alkylbenzenes, such as toluene, into their corresponding aldehydes.
Reaction Mechanism
The reaction proceeds through several steps:
1. Formation of the chromyl chloride complex: Chromyl chloride is formed by the reaction of chromic acid (H2CrO4) with sodium chloride (NaCl). The chromyl chloride complex acts as the oxidizing agent in the Etard reaction.
2. Activation of the aromatic ring: The aromatic ring of toluene is activated through the coordination of the chromyl chloride complex with the electron-rich aromatic system. This coordination weakens the carbon-hydrogen bonds adjacent to the aromatic ring, making them more susceptible to oxidation.
3. Oxidation of toluene to benzaldehyde: The activated toluene undergoes oxidation by the chromyl chloride complex, resulting in the formation of benzaldehyde. The chromyl chloride complex acts as a strong electrophile, attacking the activated carbon-hydrogen bond and forming a carbocation intermediate. This intermediate is then hydrolyzed to yield benzaldehyde.
4. Further oxidation to benzoic acid: If the reaction is allowed to continue, benzaldehyde can undergo further oxidation to form benzoic acid. However, to stop the reaction at the aldehyde stage, the reaction conditions can be carefully controlled, such as by adjusting the reaction temperature or using a milder oxidizing agent.
Applications
The Etard reaction has several applications in organic synthesis. It is commonly used for the selective oxidation of alkylbenzenes to their corresponding aldehydes, as demonstrated in the oxidation of toluene to benzaldehyde. This reaction is useful for the synthesis of various aromatic aldehydes, which are important intermediates in the preparation of pharmaceuticals, fragrances, and other organic compounds.
Conclusion
The oxidation of toluene to benzoic acid can be stopped at the aldehyde stage by using the Etard reaction. This reaction involves the oxidation of toluene to benzaldehyde using chromyl chloride as the oxidizing agent. By carefully controlling the reaction conditions, it is possible to halt the reaction at the aldehyde stage and prevent further oxidation to benzoic acid. The Etard reaction has important applications in organic synthesis, particularly in the preparation of aromatic aldehydes.
The oxidation of toluene to benzoic acid can be stopped at the aldehyd...
Red algae .it is also responsible for red colour water in mediterreian sea