Class 11 Exam  >  Class 11 Questions  >  What are damped and undamped oscillation? Start Learning for Free
What are damped and undamped oscillation?
Verified Answer
What are damped and undamped oscillation?
Undamped Oscillations: When a Simple harmonic oscillator oscillates with a constant amplitude which does not change with time, its oscillations are undamped S.H.M

Damped Oscillations : When a simple harmonic Oscillator oscillates with a decreasing amplitude with time, its oscillations are called damped S.H.M.
This question is part of UPSC exam. View all Class 11 courses
Most Upvoted Answer
What are damped and undamped oscillation?
The electrical oscillations whose amplitude goes on decreasing with time are called damped oscillations.
The electrical oscillations whose amplitude remains constant with time are called undamped oscillations.
Community Answer
What are damped and undamped oscillation?
Damped and Undamped Oscillation

Damped Oscillation:
Damped oscillation refers to the motion of an oscillating system where the amplitude of the oscillations gradually decreases over time due to the presence of an external force or friction. This external force or frictional resistance acts against the motion of the system, resulting in the dissipation of energy and the gradual reduction of the amplitude of the oscillations.

Key Points:
- Damped oscillation occurs when there is a continuous loss of energy from the oscillating system.
- The energy loss is usually caused by factors such as friction, air resistance, or other forms of damping forces.
- The damping force opposes the motion of the system, leading to a decrease in the amplitude of the oscillations.
- The rate at which the amplitude decreases depends on the damping coefficient, which represents the strength of the damping force.
- In the case of heavy damping, the system eventually comes to rest without oscillating, as all the energy is dissipated.
- The motion of a damped oscillating system can be described by a differential equation that incorporates the damping term.

Undamped Oscillation:
Undamped oscillation, on the other hand, refers to the motion of an oscillating system where there is no dissipation of energy and the amplitude of the oscillations remains constant over time. In an undamped system, there are no external forces or frictional resistances acting against the motion, allowing the system to oscillate indefinitely without any loss of energy.

Key Points:
- Undamped oscillation occurs when there is no energy loss from the oscillating system.
- Without any damping forces, the system can continue oscillating indefinitely with a constant amplitude.
- The absence of external forces or frictional resistances allows the system to conserve its total energy.
- In an undamped system, the motion is characterized by the natural frequency of the system, which is determined by its mass and stiffness.
- The natural frequency represents the frequency at which the system would oscillate in the absence of any external influences.
- The motion of an undamped oscillating system can be described by a simple harmonic motion equation, which does not include any damping term.

In summary, damped oscillation refers to the gradual decrease in the amplitude of oscillations due to the presence of external forces or frictional resistances, while undamped oscillation refers to the motion of a system that does not experience any energy loss and maintains a constant amplitude over time.
Attention Class 11 Students!
To make sure you are not studying endlessly, EduRev has designed Class 11 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 11.
Explore Courses for Class 11 exam

Similar Class 11 Doubts

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. When the moving system of a measuring instrument moves rapidly but smoothly to its final steady position, the instrument is said to be

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. In Fluid Friction Damping the amount of damping torque

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. The most efficient form of damping is

Attempt All sub parts from each question.Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.Methods of producing damping torque:(i) Air friction damping(ii) Fluid friction damping(iii) Eddy current dampingAir Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.Q. In the following deflection-time graphs which one is ideal for a sensitive and steady measuring instrument?

Top Courses for Class 11

What are damped and undamped oscillation?
Question Description
What are damped and undamped oscillation? for Class 11 2024 is part of Class 11 preparation. The Question and answers have been prepared according to the Class 11 exam syllabus. Information about What are damped and undamped oscillation? covers all topics & solutions for Class 11 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for What are damped and undamped oscillation?.
Solutions for What are damped and undamped oscillation? in English & in Hindi are available as part of our courses for Class 11. Download more important topics, notes, lectures and mock test series for Class 11 Exam by signing up for free.
Here you can find the meaning of What are damped and undamped oscillation? defined & explained in the simplest way possible. Besides giving the explanation of What are damped and undamped oscillation?, a detailed solution for What are damped and undamped oscillation? has been provided alongside types of What are damped and undamped oscillation? theory, EduRev gives you an ample number of questions to practice What are damped and undamped oscillation? tests, examples and also practice Class 11 tests.
Explore Courses for Class 11 exam

Top Courses for Class 11

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev