Arden's Lemma | Theory of Computation - Computer Science Engineering (CSE) PDF Download

Introduction

In order to find out a regular expression of a Finite Automaton, we use Arden’s Theorem along with the properties of regular expressions.

Statement
Let and Q be two regular expressions.
If P does not contain null string, then R = Q + RP has a unique solution that is R = QP*

Proof
R = Q + (Q + RP)P [After putting the value R = Q + RP]
= Q + QP + RPP
When we put the value of R recursively again and again, we get the following equation:
R = Q + QP + QP2 + QP3…..
R = Q (ε + P + P2 + P3 + …. )
R = QP* [As P* represents (ε + P + P2 + P3 + ….) ]
Hence, proved.

Assumptions for Applying Arden’s Theorem

  • The transition diagram must not have NULL transitions
  • It must have only one initial state

Method

  • Step 1: Create equations as the following form for all the states of the DFA having n states with initial state q1.
    q1 = q1R11 + q2R21 + … + qnRn1 + ε
    q2 = q1R12 + q2R22 + … + qnRn2
    …………………………
    …………………………
    …………………………
    …………………………
    qn = q1R1n + q2R2n + … + qnRnn
    Rij represents the set of labels of edges from qi to qj, if no such edge exists, then Rij = ∅
  • Step 2: Solve these equations to get the equation for the final state in terms of Rij

Problem 1: Construct a regular expression corresponding to the automata given below

Arden`s Lemma | Theory of Computation - Computer Science Engineering (CSE)

Here the initial state and final state is q1.
The equations for the three states q1, q2, and q3 are as follows
q1 = q1a + q3a + ε (ε move is because q1 is the initial state0
q2 = q1b + q2b + q3b
q3 = q2a
Now, we will solve these three equations −
q2 = q1b + q2b + q3b
= q1b + q2b + (q2a)b (Substituting value of q3)
= q1b + q2(b + ab)
= q1b (b + ab)* (Applying Arden’s Theorem)
q1 = q1a + q3a + ε
= q1a + q2aa + ε (Substituting value of q3)
= q1a + q1b(b + ab*)aa + ε (Substituting value of q2)
= q1(a + b(b + ab)*aa) + ε
= ε (a+ b(b + ab)*aa)*
= (a + b(b + ab)*aa)*
Hence, the regular expression is (a + b(b + ab)*aa)*.

Problem 2: Construct a regular expression corresponding to the automata given below
Arden`s Lemma | Theory of Computation - Computer Science Engineering (CSE)

Here the initial state is q1 and the final state is q2

Now we write down the equations

q1 = q10 + ε

q2 = q11 + q20

q3 = q21 + q30 + q31

Now, we will solve these three equations

q1 = ε0* [As, εR = R]

So, q1 = 0*

q2 = 0*1 + q20

So, q2 = 0*1(0)* [By Arden’s theorem]

Hence, the regular expression is 0*10*.

The document Arden's Lemma | Theory of Computation - Computer Science Engineering (CSE) is a part of the Computer Science Engineering (CSE) Course Theory of Computation.
All you need of Computer Science Engineering (CSE) at this link: Computer Science Engineering (CSE)
Are you preparing for Computer Science Engineering (CSE) Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Computer Science Engineering (CSE) exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
18 videos|70 docs|44 tests

Up next

18 videos|70 docs|44 tests
Download as PDF

Up next

Explore Courses for Computer Science Engineering (CSE) exam
Related Searches

Viva Questions

,

Free

,

ppt

,

Important questions

,

Summary

,

Arden's Lemma | Theory of Computation - Computer Science Engineering (CSE)

,

past year papers

,

Arden's Lemma | Theory of Computation - Computer Science Engineering (CSE)

,

Sample Paper

,

Arden's Lemma | Theory of Computation - Computer Science Engineering (CSE)

,

MCQs

,

shortcuts and tricks

,

Exam

,

mock tests for examination

,

video lectures

,

Semester Notes

,

Objective type Questions

,

study material

,

Previous Year Questions with Solutions

,

practice quizzes

,

Extra Questions

,

pdf

;