Class 10 Exam  >  Class 10 Notes  >  CBSE Sample Papers For Class 10  >  Class 10 Mathematics (Standard): CBSE (Official) Marking Scheme (2024-25)

Class 10 Mathematics (Standard): CBSE (Official) Marking Scheme (2024-25) | CBSE Sample Papers For Class 10 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


1 
                                                                  Marking Scheme  
 Class X Session 2024-25  
MATHEMATICS STANDARD (Code No.041)  
TIME: 3 hours                                                                                  MAX.MARKS: 80 
 
 
 
Q.No.                                                        Section A Marks 
1.      D) -6,6 1 
2.      B) -5 1 
3. D) From a point inside a circle only two tangents can be drawn. 1 
4. A) 7 1 
5. B) 20 cm 1 
6. 
A) 
11
9
 
1 
7.      C)  140
??    1 
8. 
B) 8?? 2
- 20 
1 
9. 
C) 30 
1 
10. 
B) isosceles and similar 
1 
11. 
A) Irrational and distinct 
1 
12. 
C)  
3
v3
 
1 
13. 
     B) 
594
7
  
1 
14. 
B) 
3
8
 
1 
15. 
      B) (-4, 0) 
1 
16. 
A) median 
1 
17. 
    C) (3,0) 
1 
18.  
D) 
3
26
 
1 
19.       B) 1 
20.  D)  1 
Page 2


1 
                                                                  Marking Scheme  
 Class X Session 2024-25  
MATHEMATICS STANDARD (Code No.041)  
TIME: 3 hours                                                                                  MAX.MARKS: 80 
 
 
 
Q.No.                                                        Section A Marks 
1.      D) -6,6 1 
2.      B) -5 1 
3. D) From a point inside a circle only two tangents can be drawn. 1 
4. A) 7 1 
5. B) 20 cm 1 
6. 
A) 
11
9
 
1 
7.      C)  140
??    1 
8. 
B) 8?? 2
- 20 
1 
9. 
C) 30 
1 
10. 
B) isosceles and similar 
1 
11. 
A) Irrational and distinct 
1 
12. 
C)  
3
v3
 
1 
13. 
     B) 
594
7
  
1 
14. 
B) 
3
8
 
1 
15. 
      B) (-4, 0) 
1 
16. 
A) median 
1 
17. 
    C) (3,0) 
1 
18.  
D) 
3
26
 
1 
19.       B) 1 
20.  D)  1 
2 
                                                  Section B  
21. (A) 
 
 
 
 
 
 
 
 
 
     (B) 
     480 = 2
5
 x 3 x 5 
720 = 2
4
 x 3
2
 x 5 
 
LCM (480,720) = 2
5
 x 3
2
x 5 = 1440 
 
HCF (480, 720) = 2
4
 x 3x 5 = 240 
 
                                                      OR 
 
     85 = 5x17, 238 = 2x7x17 
HCF( 85, 238) = 17 
 
17 = 85xm -238 
  m = 3 
½ 
½ 
 
½  
 
½  
 
 
 
 
 
1 
 
 
1 
22.(A) 
 
 
 
 
 
 
 
 
 
 
    (B) 
Total number of possible outcomes = 6x6=36 
For a product to be odd, both the numbers should be odd. 
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)  
 (11,11) 
no. of favourable outcomes = 9 
P (product is odd) = 
9
36
 or 
1
4
 
 
 
                                             OR 
 
Total number of three-digit numbers = 900. 
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815, 
 825,....,895 
Number of favourable outcomes = 10 
P(selecting one such number) = 
10
900
 or 
1
90
 
½ 
 
 
 
 
1 
½ 
 
 
 
 
½ 
 
1 
 
½ 
 
 
 
23. 
2  (
v3
2
)
2
  - (
1
v3
)
2
  
(v2)
 2
   
= 
7
12
 
1 ½ 
 
 
 
½ 
 
24 Let the required point be (x,0) 
 
v(8 - ?? )
2 
 + 25 = v41 
=> (8 - ?? )
2 
 = 16 
=> 8 - x =?4 
     => x = 4 , 12  
Two points on the x-axis are (4,0) & (12,0). 
½ 
 
½ 
 
 
 
 
1 
Page 3


1 
                                                                  Marking Scheme  
 Class X Session 2024-25  
MATHEMATICS STANDARD (Code No.041)  
TIME: 3 hours                                                                                  MAX.MARKS: 80 
 
 
 
Q.No.                                                        Section A Marks 
1.      D) -6,6 1 
2.      B) -5 1 
3. D) From a point inside a circle only two tangents can be drawn. 1 
4. A) 7 1 
5. B) 20 cm 1 
6. 
A) 
11
9
 
1 
7.      C)  140
??    1 
8. 
B) 8?? 2
- 20 
1 
9. 
C) 30 
1 
10. 
B) isosceles and similar 
1 
11. 
A) Irrational and distinct 
1 
12. 
C)  
3
v3
 
1 
13. 
     B) 
594
7
  
1 
14. 
B) 
3
8
 
1 
15. 
      B) (-4, 0) 
1 
16. 
A) median 
1 
17. 
    C) (3,0) 
1 
18.  
D) 
3
26
 
1 
19.       B) 1 
20.  D)  1 
2 
                                                  Section B  
21. (A) 
 
 
 
 
 
 
 
 
 
     (B) 
     480 = 2
5
 x 3 x 5 
720 = 2
4
 x 3
2
 x 5 
 
LCM (480,720) = 2
5
 x 3
2
x 5 = 1440 
 
HCF (480, 720) = 2
4
 x 3x 5 = 240 
 
                                                      OR 
 
     85 = 5x17, 238 = 2x7x17 
HCF( 85, 238) = 17 
 
17 = 85xm -238 
  m = 3 
½ 
½ 
 
½  
 
½  
 
 
 
 
 
1 
 
 
1 
22.(A) 
 
 
 
 
 
 
 
 
 
 
    (B) 
Total number of possible outcomes = 6x6=36 
For a product to be odd, both the numbers should be odd. 
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)  
 (11,11) 
no. of favourable outcomes = 9 
P (product is odd) = 
9
36
 or 
1
4
 
 
 
                                             OR 
 
Total number of three-digit numbers = 900. 
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815, 
 825,....,895 
Number of favourable outcomes = 10 
P(selecting one such number) = 
10
900
 or 
1
90
 
½ 
 
 
 
 
1 
½ 
 
 
 
 
½ 
 
1 
 
½ 
 
 
 
23. 
2  (
v3
2
)
2
  - (
1
v3
)
2
  
(v2)
 2
   
= 
7
12
 
1 ½ 
 
 
 
½ 
 
24 Let the required point be (x,0) 
 
v(8 - ?? )
2 
 + 25 = v41 
=> (8 - ?? )
2 
 = 16 
=> 8 - x =?4 
     => x = 4 , 12  
Two points on the x-axis are (4,0) & (12,0). 
½ 
 
½ 
 
 
 
 
1 
3 
25. 
AB = v(3 + 5)
2 
 + (0 - 6)
2 
  = 10 
BC = v(9 - 3)
2 
 + (8 - 0)
2 
  = 10 
AC = v(9 + 5)
2 
 + (8 - 6)
2 
  = 10v2 
 
 
Since AB = BC, therefore ?? ABC is isosceles 
                            
 
½ 
 
½ 
 
½ 
 
½ 
                                      Section C  
26.(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (B) 
 
Since D, E, F are the mid points of BC, CA, AB respectively 
Therefore, EF||BC, DF||AC, DE||AB 
BDEF is a parallelogram 
?  1= ? 2 & ? 3 = ? 4  
  ?? FBD ~ ?? DEF 
Also, DCEF is a parallelogram  
? 3= ? 6 & ? 1 = ? 2 ( proved above) 
 
?? DEF ~ ?? ABC 
 
                                            OR 
    
 
Since PQ//BC therefore ?? APR ~ ?? ABD  
=> 
????
????
 = 
????
????
    ……..   (i) 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
1 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
A 
P 
R 
Q 
B 
D 
C 
1 
2 
3 
4 
 5 
6 
Page 4


1 
                                                                  Marking Scheme  
 Class X Session 2024-25  
MATHEMATICS STANDARD (Code No.041)  
TIME: 3 hours                                                                                  MAX.MARKS: 80 
 
 
 
Q.No.                                                        Section A Marks 
1.      D) -6,6 1 
2.      B) -5 1 
3. D) From a point inside a circle only two tangents can be drawn. 1 
4. A) 7 1 
5. B) 20 cm 1 
6. 
A) 
11
9
 
1 
7.      C)  140
??    1 
8. 
B) 8?? 2
- 20 
1 
9. 
C) 30 
1 
10. 
B) isosceles and similar 
1 
11. 
A) Irrational and distinct 
1 
12. 
C)  
3
v3
 
1 
13. 
     B) 
594
7
  
1 
14. 
B) 
3
8
 
1 
15. 
      B) (-4, 0) 
1 
16. 
A) median 
1 
17. 
    C) (3,0) 
1 
18.  
D) 
3
26
 
1 
19.       B) 1 
20.  D)  1 
2 
                                                  Section B  
21. (A) 
 
 
 
 
 
 
 
 
 
     (B) 
     480 = 2
5
 x 3 x 5 
720 = 2
4
 x 3
2
 x 5 
 
LCM (480,720) = 2
5
 x 3
2
x 5 = 1440 
 
HCF (480, 720) = 2
4
 x 3x 5 = 240 
 
                                                      OR 
 
     85 = 5x17, 238 = 2x7x17 
HCF( 85, 238) = 17 
 
17 = 85xm -238 
  m = 3 
½ 
½ 
 
½  
 
½  
 
 
 
 
 
1 
 
 
1 
22.(A) 
 
 
 
 
 
 
 
 
 
 
    (B) 
Total number of possible outcomes = 6x6=36 
For a product to be odd, both the numbers should be odd. 
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)  
 (11,11) 
no. of favourable outcomes = 9 
P (product is odd) = 
9
36
 or 
1
4
 
 
 
                                             OR 
 
Total number of three-digit numbers = 900. 
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815, 
 825,....,895 
Number of favourable outcomes = 10 
P(selecting one such number) = 
10
900
 or 
1
90
 
½ 
 
 
 
 
1 
½ 
 
 
 
 
½ 
 
1 
 
½ 
 
 
 
23. 
2  (
v3
2
)
2
  - (
1
v3
)
2
  
(v2)
 2
   
= 
7
12
 
1 ½ 
 
 
 
½ 
 
24 Let the required point be (x,0) 
 
v(8 - ?? )
2 
 + 25 = v41 
=> (8 - ?? )
2 
 = 16 
=> 8 - x =?4 
     => x = 4 , 12  
Two points on the x-axis are (4,0) & (12,0). 
½ 
 
½ 
 
 
 
 
1 
3 
25. 
AB = v(3 + 5)
2 
 + (0 - 6)
2 
  = 10 
BC = v(9 - 3)
2 
 + (8 - 0)
2 
  = 10 
AC = v(9 + 5)
2 
 + (8 - 6)
2 
  = 10v2 
 
 
Since AB = BC, therefore ?? ABC is isosceles 
                            
 
½ 
 
½ 
 
½ 
 
½ 
                                      Section C  
26.(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (B) 
 
Since D, E, F are the mid points of BC, CA, AB respectively 
Therefore, EF||BC, DF||AC, DE||AB 
BDEF is a parallelogram 
?  1= ? 2 & ? 3 = ? 4  
  ?? FBD ~ ?? DEF 
Also, DCEF is a parallelogram  
? 3= ? 6 & ? 1 = ? 2 ( proved above) 
 
?? DEF ~ ?? ABC 
 
                                            OR 
    
 
Since PQ//BC therefore ?? APR ~ ?? ABD  
=> 
????
????
 = 
????
????
    ……..   (i) 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
1 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
A 
P 
R 
Q 
B 
D 
C 
1 
2 
3 
4 
 5 
6 
4 
?? AQR ~ ?? ACD 
=> 
????
????
 = 
????
????
    ……..   (ii) 
                                                                 
Now, 
????
????
 = 
????
????
   ……….(iii) 
Using (i), (ii) & (iii), 
????
????
 = 
????
????
 
But, BD = DC  
=> PR = RQ or AD bisects PQ 
 
 
 
 
1 
 
 
1 
27. Let the numbers be x and  18-x. 
1
?? + 
1
18-?? = 
9
40
 
=>  18×40 = 9x(18-?? ) 
=> ?? 2
 -18 ?? + 80=0 
=> (?? -10)(?? -8)=0  
=> ?? =10, 8. 
=> 18-?? =8, 10 
Hence two numbers are 8 and 10. 
½ 
1 
 
 
 
 
1 
 
½ 
28. 
 
 
 
 
 
 
 
 
 
 
 
 
From given polynomial ?? + ?? = 
5
6
 , ???? = 
1
6
 
?? 2 
+ ?? 2 
  =  (
5
6
)
2
- 2 x 
1
6
  = 
13
36
 
 
And   ?? 2 
?? 2 
 = (
1
6
)
2
 = 
1
36
 
 
?? 2 
- 
13
36
?? +
1
36
 
? Required polynomial is    36?? 2 
-13 ?? +1                         
                                                   
1 
 
1 
 
 
½ 
 
 
 
 
½ 
 
29. (???????? + ?????? ?? ) 
2
  + (???????? - ?????? ?? ) 
2
 = 2 ( ?????? 2 
??  + ?????? 2 
?? ) = 2 
=> (1)
2
  + (???????? - ?????? ?? ) 
2
 = 2 
=> (???????? - ?????? ?? ) 
2
 = 1 
=> ???????? - ?????? ?? = ? 1 
 
1 ½ 
1 
½ 
30.(A) 
 
 
 
 
 
 
 
(B) 
Angle described by minute hand in 5 min = 30°. 
length of minute hand =18 cm = r. 
Area swept by minute hand in 35 minutes 
          =( 
22
7
x18x18×
30
360
) x 7 
          =  594 ???? 2
. 
                                              OR 
 
Area of minor segment = Ar. Sector OAB- Ar. ??  OAB 
                                   =
90
360
x 
22
7
 × 14x14  - 
v3
4
 x 14x14 
                                   = 69.23 cm
2
 
 
 
 
2 
1 
 
 
 
 
2 
1 
Page 5


1 
                                                                  Marking Scheme  
 Class X Session 2024-25  
MATHEMATICS STANDARD (Code No.041)  
TIME: 3 hours                                                                                  MAX.MARKS: 80 
 
 
 
Q.No.                                                        Section A Marks 
1.      D) -6,6 1 
2.      B) -5 1 
3. D) From a point inside a circle only two tangents can be drawn. 1 
4. A) 7 1 
5. B) 20 cm 1 
6. 
A) 
11
9
 
1 
7.      C)  140
??    1 
8. 
B) 8?? 2
- 20 
1 
9. 
C) 30 
1 
10. 
B) isosceles and similar 
1 
11. 
A) Irrational and distinct 
1 
12. 
C)  
3
v3
 
1 
13. 
     B) 
594
7
  
1 
14. 
B) 
3
8
 
1 
15. 
      B) (-4, 0) 
1 
16. 
A) median 
1 
17. 
    C) (3,0) 
1 
18.  
D) 
3
26
 
1 
19.       B) 1 
20.  D)  1 
2 
                                                  Section B  
21. (A) 
 
 
 
 
 
 
 
 
 
     (B) 
     480 = 2
5
 x 3 x 5 
720 = 2
4
 x 3
2
 x 5 
 
LCM (480,720) = 2
5
 x 3
2
x 5 = 1440 
 
HCF (480, 720) = 2
4
 x 3x 5 = 240 
 
                                                      OR 
 
     85 = 5x17, 238 = 2x7x17 
HCF( 85, 238) = 17 
 
17 = 85xm -238 
  m = 3 
½ 
½ 
 
½  
 
½  
 
 
 
 
 
1 
 
 
1 
22.(A) 
 
 
 
 
 
 
 
 
 
 
    (B) 
Total number of possible outcomes = 6x6=36 
For a product to be odd, both the numbers should be odd. 
Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9)  
 (11,11) 
no. of favourable outcomes = 9 
P (product is odd) = 
9
36
 or 
1
4
 
 
 
                                             OR 
 
Total number of three-digit numbers = 900. 
Numbers with hundredth digit 8 & and unit’s digit 5 are 805,815, 
 825,....,895 
Number of favourable outcomes = 10 
P(selecting one such number) = 
10
900
 or 
1
90
 
½ 
 
 
 
 
1 
½ 
 
 
 
 
½ 
 
1 
 
½ 
 
 
 
23. 
2  (
v3
2
)
2
  - (
1
v3
)
2
  
(v2)
 2
   
= 
7
12
 
1 ½ 
 
 
 
½ 
 
24 Let the required point be (x,0) 
 
v(8 - ?? )
2 
 + 25 = v41 
=> (8 - ?? )
2 
 = 16 
=> 8 - x =?4 
     => x = 4 , 12  
Two points on the x-axis are (4,0) & (12,0). 
½ 
 
½ 
 
 
 
 
1 
3 
25. 
AB = v(3 + 5)
2 
 + (0 - 6)
2 
  = 10 
BC = v(9 - 3)
2 
 + (8 - 0)
2 
  = 10 
AC = v(9 + 5)
2 
 + (8 - 6)
2 
  = 10v2 
 
 
Since AB = BC, therefore ?? ABC is isosceles 
                            
 
½ 
 
½ 
 
½ 
 
½ 
                                      Section C  
26.(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (B) 
 
Since D, E, F are the mid points of BC, CA, AB respectively 
Therefore, EF||BC, DF||AC, DE||AB 
BDEF is a parallelogram 
?  1= ? 2 & ? 3 = ? 4  
  ?? FBD ~ ?? DEF 
Also, DCEF is a parallelogram  
? 3= ? 6 & ? 1 = ? 2 ( proved above) 
 
?? DEF ~ ?? ABC 
 
                                            OR 
    
 
Since PQ//BC therefore ?? APR ~ ?? ABD  
=> 
????
????
 = 
????
????
    ……..   (i) 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
1 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
A 
P 
R 
Q 
B 
D 
C 
1 
2 
3 
4 
 5 
6 
4 
?? AQR ~ ?? ACD 
=> 
????
????
 = 
????
????
    ……..   (ii) 
                                                                 
Now, 
????
????
 = 
????
????
   ……….(iii) 
Using (i), (ii) & (iii), 
????
????
 = 
????
????
 
But, BD = DC  
=> PR = RQ or AD bisects PQ 
 
 
 
 
1 
 
 
1 
27. Let the numbers be x and  18-x. 
1
?? + 
1
18-?? = 
9
40
 
=>  18×40 = 9x(18-?? ) 
=> ?? 2
 -18 ?? + 80=0 
=> (?? -10)(?? -8)=0  
=> ?? =10, 8. 
=> 18-?? =8, 10 
Hence two numbers are 8 and 10. 
½ 
1 
 
 
 
 
1 
 
½ 
28. 
 
 
 
 
 
 
 
 
 
 
 
 
From given polynomial ?? + ?? = 
5
6
 , ???? = 
1
6
 
?? 2 
+ ?? 2 
  =  (
5
6
)
2
- 2 x 
1
6
  = 
13
36
 
 
And   ?? 2 
?? 2 
 = (
1
6
)
2
 = 
1
36
 
 
?? 2 
- 
13
36
?? +
1
36
 
? Required polynomial is    36?? 2 
-13 ?? +1                         
                                                   
1 
 
1 
 
 
½ 
 
 
 
 
½ 
 
29. (???????? + ?????? ?? ) 
2
  + (???????? - ?????? ?? ) 
2
 = 2 ( ?????? 2 
??  + ?????? 2 
?? ) = 2 
=> (1)
2
  + (???????? - ?????? ?? ) 
2
 = 2 
=> (???????? - ?????? ?? ) 
2
 = 1 
=> ???????? - ?????? ?? = ? 1 
 
1 ½ 
1 
½ 
30.(A) 
 
 
 
 
 
 
 
(B) 
Angle described by minute hand in 5 min = 30°. 
length of minute hand =18 cm = r. 
Area swept by minute hand in 35 minutes 
          =( 
22
7
x18x18×
30
360
) x 7 
          =  594 ???? 2
. 
                                              OR 
 
Area of minor segment = Ar. Sector OAB- Ar. ??  OAB 
                                   =
90
360
x 
22
7
 × 14x14  - 
v3
4
 x 14x14 
                                   = 69.23 cm
2
 
 
 
 
2 
1 
 
 
 
 
2 
1 
5 
31. Let v3 be a rational number. 
? v3 =
?? ?? , where q?0 and let p & q be co-prime. 
3q
2 
= p
2
 ? p
2
 is divisible by 3 ? p is divisible by 3 ----- (i) 
      ? p = 3a, where ‘a’ is some integer 
9a
2
 = 3q
2 
? q
2
 = 3a
2
 ?q
2
 is divisible by 3 ? q is divisible by 3----- (ii) 
 
(i) and (ii) leads to contradiction as ‘p’ and ‘q’ are co-prime. 
 
½ 
 
1 
 
1 
 
½ 
 
 
                                     Section D  
32.(A) 
 
 
 
 
 
(B) 
x+2y=3, 2x-3y+8=0 
Correct graph of each equation 
Solution  x=-1 and y=2 
 
OR 
 
Let car I starts from A with speed x km/hr and car Il Starts from B with 
speed  y km/hr   (x>y) 
 
Case I- when cars are moving in the same direction. 
Distance covered by car I in 9 hours = 9x. 
Distance covered by car II in 9 hours = 9y 
Therefore 9 (x-y) = 180  
=> x-y= 20    ……………. (i) 
 
case II- when cars are moving in opposite directions. 
 
Distance covered by Car I in 1 hour = x 
Distance covered by Car II in 1 hour = y 
 
Therefore x + y=180    ………….. (ii) 
 Solving (i) and (ii) we get, x=100 km/hr, y=80 km/hr. 
 
2+2 = 4 
1 
 
 
 
 
 
 
 
 
 
 
 
2 
 
 
 
 
 
2 
 
1 
33. Correct given, to prove, construction, figure 
 
Correct proof 
 
AR = AQ = 7cm 
BP = BR = AB-AR = 3cm 
CP =CQ = 5cm 
BC = BP+PC = 3+5 = 8 cm 
1 
 
2 
 
½ 
½ 
½ 
½ 
 
Read More
303 docs|7 tests

Top Courses for Class 10

303 docs|7 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

Class 10 Mathematics (Standard): CBSE (Official) Marking Scheme (2024-25) | CBSE Sample Papers For Class 10

,

Semester Notes

,

MCQs

,

ppt

,

study material

,

Free

,

Viva Questions

,

past year papers

,

Exam

,

Extra Questions

,

Class 10 Mathematics (Standard): CBSE (Official) Marking Scheme (2024-25) | CBSE Sample Papers For Class 10

,

practice quizzes

,

Summary

,

Sample Paper

,

mock tests for examination

,

Important questions

,

Objective type Questions

,

shortcuts and tricks

,

pdf

,

video lectures

,

Class 10 Mathematics (Standard): CBSE (Official) Marking Scheme (2024-25) | CBSE Sample Papers For Class 10

;