Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Previous Year Questions: Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Previous Year Questions 2024

Q1: If sin α = √3/2 , cos β = √3/2 then tan α. tan β is:     (2024)
(a) √3
(b) 1/√3
(c) 1
(d) 0

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
sin α = √3/2, ⇒ sin α  = sin 60º
⇒ α = 60º
∵ cos β = √3/2, 
⇒ cos β = cos 30º 
⇒ β = 30º 
tan α. tan β = tan 60º. tan 30º
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= 1


Q2: Evaluate: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry        (2024)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q3: Prove that: (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1     (2024)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
L.H.S. = (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
= (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 1 = R.H.S.
Hence, proved.


Previous Year Questions 2023

Q4: If 2 tan A = 3, then find the value of Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Hence, the answer is 1.


Q5: [5/8 sec260° - tan260° + cos245° is equal to    (2023)
(a) 5/3
(b) -1/2
(c) 0
(d) -1/4

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry 


Q6: Evaluate 2 sec2θ + 3 cosec2θ - 2 sin θ cos θ if θ = 45°  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Since θ = 45°, sec 45° = √2, cosec 45° = √2, sin 45° = 1/√2 cos 45° = 1/√2
2sec2 θ + 3 cosec2 θ – 2 sin θ cos θ
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 4 + 6 – 1 = 9


Q7: Which of the following is true for all values of θ(0o ≤ θ ≤ 90o)? (2023)
(a) 
cos2θ - sin2θ - 1
(b) 
cosec2θ - sec2θ- 1
(c) 
sec2θ - tan2θ - 1
(d) 
cot2θ- tan2θ = 1

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)


Q8: If sinθ +cosθ = √3. then find the value of sinθ . cosθ.  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, sinθ +cosθ = √3
Squaring both sides, we get (sinθ + corsθ)2 = 3
⇒ sin2θ + cos2θ + 2sinθ cosθ = 3
⇒ 2sinθ cosθ = 3 - 1     ( ∵ sin2θ + cos2θ = 1)
⇒ 2sinθ cosθ = 2
⇒  sinθ cosθ = 1


Q9: If  sin α = 1/√2 and cot β = √3, then find the value of cosec α + cosec β.  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, sin α = 1/√2 and cot β = √3
We know that, cosec α = 1/sinα = √2
Also, 1 + cot2β = cosec2β
⇒ cosec2β = 4
⇒ cosec β = 4
Now, cosec α + cosec β = √2 + 2


Q10: Prove that the Following Identities: Sec A (1 + Sin A) ( Sec A - tan A) = 1  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: LHS = sec A(1 + sin A )( sec A - tan A)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 1
= RHS
Hence proved..


Previous Year Questions 2022


Q11: Given that cos θ = √3/2, then the value of  Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is  (2022)
(a) -1
(b) 1
(c) 1/2
(d) -1/2

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol:
Given, cosθ = √3/2  = B/H
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Let B = √3k and H = 2k
∴ Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry [By Pythagoras Theorem]
⇒√k2 = k
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q12: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is equal to   (2022)
(a) 0
(b) 1
(c) sinθ + cosθ
(d) sinθ - cosθ

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol: We have,
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q13: The value of θ for which 2 sin2θ = 1, is   (2022)
(a) 15° 
(b) 30°
(c) 45° 
(d) 60°

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Sol: Given, 2 sin2θ = 1 ⇒ sin2θ = 1/2
⇒ 2θ = 30°
⇒ θ = 15°


Q14: If sin2θ + sinθ = 1, then find the value of cos2θ + cos4θ is   (2022)
(a) -1
(b) 1
(c) 0
(d) 2

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (b)
Sol: Given, sin2θ + sinθ = 1 ---(i)
sinθ = 1 - sin2θ
⇒ sinθ = cos2θ ---(ii)
∴ cos2θ + cos4θ
= sinθ + sin2θ [From (ii)]
= 1        [From (i)]


Previous Year Questions 2021

Q15: If 3 sin A = 1. then find the value of sec A.    (2021 C)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have, 3 sin A = 1
∴ sin A = 1/3
Now by using cosA = 1 - sin2 A, we get
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q16: Show that: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry    (2021 C)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have, L.H.S.
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
[By using 1 + tan2θ = sec2θ and 1 + cot2 θ = cosec2θ ]
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Hence,
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Previous Year Questions 2020


Q17: If sin θ = cos θ, then the value of tan2 θ + cot2 θ is (2020)
(a) 2
(b) 4
(c) 1
(d) 10/3

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Sol: We have, sin θ = cos θ
or sin θ / cos θ = 1
⇒ tan θ = 1 and cot θ = 1     [∵ cot θ = 1/tanθ]
∴ tanθ + cotθ = 1 + 1 = 2
Hence, A option is correct.


Q18: Given 15 cot A = 8, then find the values of sin A and sec A.    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: In right angle ΔABC we have
15 cot A = 8
⇒ cot A = 8/15
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Since, cot A = AB/BC
∴ AB/BC = 8/15
Let AB = 8k and BC = 15k
By using Pythagoras theorem, we get
AC= AB2 + BC2
⇒ (8k)2 + (15)2 = 64k2 + 225k2 = 289k2 = (17k)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
So, sec A = 1/cosA = 17/8


Q19: Write the value of sin2 30° + cos2 60°.     (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:  We have, sin2 30° + cos2 60°
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q20: The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is      (2020)
(a) a+ b2
(b) a + b
(c) Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
(d) Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol: Given the point A (cos θ + b sin θ , 0), (0 , a sin θ − b cos θ)
By distance formula,
The distance of
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
[∵ cos2θ + sin2θ = 1]


Q21: 5 tan2θ - 5 sec2θ = ____________.    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have 5(tan2θ - sec2θ)
= 5(-1) = - 5 [By using 1 + tan2θ = sec2 θ ⇒ tan2θ - sec2θ = - 1]


Q22: If sinθ + cosθ = √3. then prove that tan θ + cot θ = 1    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: sin θ + cos θ =√3
= (sinθ + cosθ)= 3
= sin2 θ + cos2 θ + 2sin θ cos θ = 3
⇒ 2sin θ cos θ = 2
⇒ sin θ cos θ = 1
⇒ sin θ cos θ = sin2θ + cos2θ
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
⇒ tan θ + cot θ = 1


Previous Year Questions 2019

Q23: If sin x + cos y = 1, x = 30° and y is acute angle, find the value of y.    (2019)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given,
⇒ sin x + cos y = 1
⇒ sin 30° + cos y = 1
⇒ 1/2 + cos y = 1
⇒ cos y = 1 - 1/2
⇒ cos y = 1/2
⇒ cos y = cos 60°.
Hence, y = 60°.


Q24: If cosec2 θ (cos θ - 1)(1 + cos θ) = k, then what is the value of k?   (2019)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:  Given:
cosec2 θ (cos θ - 1)(1 + cos θ) = k
Concept used:
Cosec α = 1/Sin α
Sin2 α + Cos2 α = 1
(a + b)(a - b) = a2 - b2
Calculation:
cosec2 θ (cos θ - 1)(1 + cos θ) = k
⇒ cosec2 θ (1 - cos θ)(1 + cos θ) = -k
⇒ cosec2 θ (1 - cos2 θ) = -k
⇒ cosec2 θ × sin2 θ = -k
⇒ 1 = -k
⇒ k = -1
∴ The value of k is (-1).


Q25: The value of ( 1 + cot A − cosec A ) ( 1 + tan A + sec A ) is

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: 
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

The document Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
124 videos|457 docs|77 tests

Up next

FAQs on Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

1. What are the basic trigonometric ratios and how are they defined in a right triangle?
Ans. The basic trigonometric ratios are sine (sin), cosine (cos), and tangent (tan). In a right triangle, these ratios are defined as follows: - Sine (sin) of an angle is the ratio of the length of the opposite side to the length of the hypotenuse. - Cosine (cos) of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. - Tangent (tan) of an angle is the ratio of the length of the opposite side to the length of the adjacent side.
2. How do I remember the trigonometric ratios easily?
Ans. A commonly used mnemonic to remember the trigonometric ratios is "SOHCAHTOA": - SOH: Sine = Opposite/Hypotenuse - CAH: Cosine = Adjacent/Hypotenuse - TOA: Tangent = Opposite/Adjacent. This helps in recalling the relationships between the sides of the triangle and the angles.
3. What is the relationship between the sine and cosine functions?
Ans. The sine and cosine functions are related through the Pythagorean identity: sin²(θ) + cos²(θ) = 1 for any angle θ. This means that for any angle, the square of the sine of the angle plus the square of the cosine of the angle equals one.
4. How can I apply trigonometry to solve real-world problems?
Ans. Trigonometry can be applied in various real-world scenarios such as calculating heights and distances, navigation, architecture, and physics. For example, if you need to find the height of a tree, you can measure the distance from the tree and the angle of elevation to the top of the tree. Using the tangent function, you can calculate the height based on these measurements.
5. What are some common mistakes to avoid when studying trigonometry?
Ans. Some common mistakes include miscalculating the ratios, forgetting to use the correct angle measurement (degrees vs. radians), and confusing the definitions of sine, cosine, and tangent. It's also important to carefully label the sides of the triangle with respect to the angle being considered. Regular practice and reviewing the definitions can help avoid these errors.
124 videos|457 docs|77 tests
Download as PDF

Up next

Explore Courses for Class 10 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

ppt

,

Objective type Questions

,

Summary

,

Sample Paper

,

past year papers

,

MCQs

,

study material

,

shortcuts and tricks

,

video lectures

,

Free

,

mock tests for examination

,

Viva Questions

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

practice quizzes

,

Previous Year Questions with Solutions

,

Exam

,

Extra Questions

,

pdf

,

Important questions

;