Class 8 Exam  >  Class 8 Notes  >  Mathematics (Maths) Class 8  >  Practice Questions with Solutions: Understanding Quadrilaterals

Class 8 Maths Chapter 3 Practice Question Answers - Understanding Quadrilaterals

Q1: A diagonal and a side of a rhombus are of equal length. Find the measure of the angles of the rhombus.
Sol:

Let ABCD be the rhombus.
Thus, AB = BC = CD = DAClass 8 Maths Chapter 3 Practice Question Answers - Understanding Quadrilaterals

Given that a side and diagonal are equal.
AB = BD (say)
Therefore, AB = BC = CD = DA = BD
Now, all the sides of a triangle ABD are equal.
Therefore, ΔABD is an equilateral triangle.
Similarly,
ΔBCD is also an equilateral triangle.
Thus, ∠A = ∠ABD = ∠ADB = ∠DBC = ∠C = ∠CDB = 60°
∠B = ∠ABD + ∠DBC = 60° + 60° = 120°
And
∠D = ∠ADB + ∠CDB = 60° + 60° = 120°
Hence, the angles of the rhombus are 60°, 120°, 60° and 120°.

Q2: ABCD is a parallelogram with ∠A = 80°. The internal bisectors of ∠B and ∠C meet each other at O. Find the measure of the three angles of ΔBCO.
Sol:

Given,
∠A = 80°
Class 8 Maths Chapter 3 Practice Question Answers - Understanding Quadrilaterals

We know that the opposite angles of a parallelogram are equal.
∠A = ∠C = 80°
And
∠OCB = (1/2) × ∠C
= (1/2) × 80°
= 40°
∠B = 180° – ∠A (the sum of interior angles on the same side of the transversal is 180)
= 180° – 80°
= 100°
Also,
∠CBO = (1/2) × ∠B
= (1/2) × 100°
= 50°
By the angle sum property of triangle BCO,
∠BOC + ∠OBC + ∠CBO = 180°
∠BOC = 180° – (∠OBC + CBO)
= 180° – (40° + 50°)
= 180° – 90°
= 90°
Hence, the measure of all the three angles of a triangle BCO is 40°, 50° and 90°.

Q3: Adjacent sides of a rectangle are in the ratio 5 : 12, if the perimeter of the rectangle is 34 cm, find the length of the diagonal.
Sol:

Given,
Ratio of the adjacent sides of the rectangle = 5 : 12
Let 5x and 12x be the two adjacent sides.
We know that the sum of all sides of a rectangle is equal to its perimeter.
Thus,
5x + 12x + 5x + 12x = 34 cm (given)
34x = 34
x = 34/34
x = 1 cm
Therefore, the adjacent sides are 5 cm and 12 cm respectively.
i.e. l = 12 cm, b = 5 cm
Length of the diagonal = √(l+ b2)
= √(122 + 52)
= √(144 + 25)
= √169
= 13 cm
Hence, the length of the diagonal is 13 cm.

Q4: The angles of a quadrilateral are in the ratio of 1 : 2 : 3 : 4. What is the measure of the four angles?
Sol:
Given,
The ratio of the angles of quadrilaterals = 1 : 2 : 3 : 4
Let the four angles of the quadrilateral be x, 2x, 3x, and 4x respectively.
The sum of four angles of a quadrilateral is 360°.
Therefore,
x + 2x + 3x + 4x = 360°
10x = 360°
x = 360°/10
x = 36°
Therefore,
First angle = x = 36°
Second angle = 2x = 2 × 36 = 72°
Third angle = 3x = 3 × 36 = 108°
Fourth angle = 4x = 4 × 36 = 144°
Hence, the measure of four angles is 36°, 72°, 108° and 144°.

Q5: In a quadrilateral ABCD, the measure of the three angles A, B and C of the quadrilateral is 110°, 70° and 80°, respectively. Find the measure of the fourth angle.
Sol:
Let,
∠A = 110°
∠B = 70°
∠C = 80°
∠D = x
We know that the sum of all internal angles of quadrilateral ABCD is 360°.
∠A + ∠B+ ∠C+∠D = 360°
110° + 70° + 80° + x = 360°
260° + x = 360°
x = 360° – 260°
x = 100°
Therefore, the fourth angle is 100°.

Q6: A quadrilateral has three acute angles, each measure 80°. What is the measure of the fourth angle?
Sol:
Let x be the measure of the fourth angle of a quadrilateral.
Sum of the four angles of a quadrilateral = 360°
80° + 80° + 80° + x = 360°
x = 360° – (80° + 80° + 80°)
x = 360° – 240°
x = 120°
Hence, the fourth angle is 120°.

Q7: In a quadrilateral ABCD, ∠D is equal to 150° and ∠A = ∠B = ∠C. Find ∠A, ∠B and ∠C.
Sol:
Given,
∠D = 150°
Let ∠A = ∠B = ∠C = x
By angle sum property of quadrilateral,
∠A + ∠B + ∠C + ∠D = 360°
x + x + x +∠D = 360°
3x +∠D = 360°
3x = 360° – ∠D
30 = 360° – 150°
3x = 210°
x = 70°
Hence, ∠A = ∠B = ∠C = 70°.

Q8: In quadrilaterals,
(i) which of them have their diagonals bisecting each other?
(ii) which of them have their diagonal perpendicular to each other?
(iii) which of them have equal diagonals?
Sol:

(i) Diagonals bisect each other in:

  • Parallelogram
  • Rhombus
  • Rectangle
  • Square
  • Kite

(ii) Diagonals are perpendicular in:

  • Rhombus
  • Square
  • Kite

(iii) Diagonals are equal to each other in:

  • Rectangle
  • Square


Q9: The opposite angles of a parallelogram are (3x + 5)° and (61 – x)°. Find the measure of four angles.
Sol:

Given,
(3x + 5)° and (61 – x)° are the opposite angles of a parallelogram.
We know that the opposite angles of a parallelogram are equal.
Therefore,
(3x + 5)° = (61 – x)°
3x + x = 61° – 5°
4x = 56°
x = 56°/4
x = 14°
⇒ 3x + 5 = 3(14) + 5 = 42 + 5 = 47
61 – x = 61 – 14 = 47
The measure of angles adjacent to the given angles = 180° – 47° = 133°
Hence, the measure of four angles of the parallelogram are 47°, 133°, 47°, and 133°.

Q10: Find the measure of all four angles of a parallelogram whose consecutive angles are in the ratio 1 : 3.
Sol:

Given,
The ratio of two consecutive angles of a parallelogram = 1 : 3
Let x and 3x be the two consecutive angles.
We know that the sum of interior angles on the same side of the transversal is 180°.
Therefore, x + 3x = 180°
4x = 180°
x = 180°/4
x = 45°
⇒ 3x = 3(45°) = 135°
Thus, the measure of two consecutive angles is 45° and 135°.
As we know, the opposite angles of a parallelogram are equal.
Hence, the measure of all the four angles is 45°, 135°, 45°, and 135°.

Q11:  How many sides do a regular polygon have, if the measure of an exterior angle is given as 24° ?
Sol:
In a regular polygon, all exterior angles are congruent (have the same measure), and the sum of exterior angles of any polygon is always 360°.
The formula for the measure of each exterior angle of a regular polygon is:
Measure of each exterior angle = 360° / Number of sides
Given that the measure of an exterior angle is 24°, we can use this formula to find the number of sides:
24° = 360° / Number of sides
To solve for the number of sides (n):
n = 360° / 24°
n = 15
So, a regular polygon with an exterior angle measuring 24° has 15 sides.

Q12:What is the measure of each exterior angle of a regular polygon of 15 sides?
(a) 30°
(b) 45°
(c) 60°
(d) 24°
Ans:
(d)
Sol: The sum of the exterior angles of any polygon, regardless of the number of sides, is always 360°.
In a regular polygon, all exterior angles are congruent, so to find the measure of each exterior angle, we divide the sum of exterior angles by the number of sides.
For a regular polygon with 15 sides:
Measure of each exterior angle = 360° / 15 = 24°
So, the correct answer is (d) 24°.

Q13: When the sum of the internal angles of a polygon is 10 right angles, then how many sides does it have?
(a) 6
(b) 5
(c) 8
(d) 7
Ans:
(d)
Sol: The sum of the internal angles of a polygon can be found using the formula: Sum = (n - 2) * 180°, where n is the number of sides of the polygon.
Given that the sum of the internal angles is 10 right angles, which is equivalent to 10 * 90° = 900°, we can set up the equation:
(n - 2) x 180° = 900°
Dividing both sides by 180°:
n - 2 = 5
Adding 2 to both sides:
n = 7
So, the polygon has 7 sides.
The correct answer is (d) 7.

Q14: When one angle of a parallelogram is a right angle, then what is the name of the quadrilateral?
(a) kite
(b) rectangle
(c) rhombus
(d) square
Ans:
(b)
Sol: A rectangle is a type of parallelogram where all angles are right angles.

Q15: Select a false statement from those given below:
(a) A square is a rectangle that has equal adjacent sides
(b) A square is a rhombus whose one angle is a right angle
(c) The diagonals of a square bisect each other at right angles
(d) The diagonals of a square do not divide the whole square into four equal parts.
Ans:
(d)
Sol: In a square, the diagonals do divide the square into four equal parts.

The document Class 8 Maths Chapter 3 Practice Question Answers - Understanding Quadrilaterals is a part of the Class 8 Course Mathematics (Maths) Class 8.
All you need of Class 8 at this link: Class 8
Are you preparing for Class 8 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 8 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
81 videos|413 docs|31 tests

Up next

81 videos|413 docs|31 tests
Download as PDF

Up next

Explore Courses for Class 8 exam
Related Searches

past year papers

,

Extra Questions

,

study material

,

Important questions

,

shortcuts and tricks

,

Summary

,

Previous Year Questions with Solutions

,

Semester Notes

,

video lectures

,

Viva Questions

,

MCQs

,

Sample Paper

,

pdf

,

ppt

,

Class 8 Maths Chapter 3 Practice Question Answers - Understanding Quadrilaterals

,

practice quizzes

,

mock tests for examination

,

Exam

,

Objective type Questions

,

Class 8 Maths Chapter 3 Practice Question Answers - Understanding Quadrilaterals

,

Class 8 Maths Chapter 3 Practice Question Answers - Understanding Quadrilaterals

,

Free

;