Class 10  >  Mathematics (Maths) Class 10  >  NCERT Solutions: Arithmetic Progressions (Exercise 5.1)

Arithmetic Progressions (Exercise 5.1) NCERT Solutions - Mathematics (Maths) Class 10

Arithmetic Progressions (Exercise 5.1) NCERT Solutions | Mathematics (Maths) Class 10

Q1. In which of the following situations, does the list of numbers involved make an arithmetic progression and why?
(i) The taxi fare after each km when the fare is Rs 15 for the first km and Rs 8 for each additional km.

We can write the given condition as:

  • Taxi fare for 1 km = 15
  • Taxi fare for first 2 kms = 15+8 = 23

  • Taxi fare for first 3 kms = 23+8 = 31

  • Taxi fare for first 4 kms = 31+8 = 39 and so on……

Thus, 15, 23, 31, 39 … forms an A.P. because every next term is 8 more than the preceding term.

(ii) The amount of air present in a cylinder when a vacuum pump removes 1/4 of the air remaining in the cylinder at a time.

Let the volume of air in a cylinder, initially, be litres.

  • In each stroke, the vacuum pump removes 1/4th of air remaining in the cylinder at a time. 
  • Or we can say, after every stroke, 1-1/4 = 3/4th part of air will remain.
  • Therefore, volumes will be V, 3V/4 , (3V/4)2, (3V/4)3…and so on

Clearly, we can see here, the adjacent terms of this series do not have a common difference between them. Therefore, this series is not an A.P.

(iii) The cost of digging a well after every metre of digging, when it costs Rs 150 for the first metre and rises by Rs 50 for each subsequent metre.

We can write the given condition as:

  • Cost of digging a well for first metre = Rs.150
  • Cost of digging a well for first 2 metres = Rs.150+50 = Rs.200
  • Cost of digging a well for first 3 metres = Rs.200+50 = Rs.250
  • Cost of digging a well for first 4 metres =Rs.250+50 = Rs.300 and so on.

Clearly, 150, 200, 250, 300 … forms an A.P. with a common difference of 50 between each term.

(iv) The amount of money in the account every year, when Rs 10000 is deposited at compound interest at 8% per annum.

We know that if Rs. P is deposited at r% compound interest per annum for n years, the amount of money will be:

  • P(1+r/100)n
    Therefore, after each year, the amount of money will be;
    10000(1+8/100), 10000(1+8/100)2, 10000(1+8/100)3……

Clearly, the terms of this series do not have a common difference between them. Therefore, this series is not an A.P.


Q2. Write first four terms of the A.P. when the first term a and the common difference are given as follows:
(i) a = 10, d = 10

Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5 …
a1 = a = 10
a2 = a1+d = 10+10 = 20
a3 = a2+d = 20+10 = 30
a4 = a3+d = 30+10 = 40
a5 = a4+d = 40+10 = 50
And so on…
Therefore, the A.P. series will be 10, 20, 30, 40, 50 …
And First four terms of this A.P. will be 10, 20, 30, and 40.

(ii) a = – 2, d = 0

Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5
a1 = a = -2
a2 = a1+d = – 2+0 = – 2
a3 = a2+d = – 2+0 = – 2
a4 = a3+d = – 2+0 = – 2
Therefore, the A.P. series will be – 2, – 2, – 2, – 2 …
And, First four terms of this A.P. will be – 2, – 2, – 2 and – 2.

(iii) a = 4, d = – 3

Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5
a1 = a = 4
a2 = a1+d = 4-3 = 1
a3 = a2+d = 1-3 = – 2
a4 = a3+d = -2-3 = – 5
Therefore, the A.P. series will be 4, 1, – 2 – 5 …
And, first four terms of this A.P. will be 4, 1, – 2 and – 5.

(iv) a = – 1, d = 1/2

Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5
a2 = a1+d = -1+1/2 = -1/2
a3 = a2+d = -1/2+1/2 = 0
a4 = a3+d = 0+1/2 = 1/2
Thus, the A.P. series will be-1, -1/2, 0, 1/2
And First four terms of this A.P. will be -1, -1/2, 0 and 1/2.

(v) a = – 1.25, d = – 0.25

Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5
a1 = a = – 1.25
a2 = a1 + d = – 1.25-0.25 = – 1.50
a3 = a2 + d = – 1.50-0.25 = – 1.75
a4 = a3 + d = – 1.75-0.25 = – 2.00
Therefore, the A.P series will be 1.25, – 1.50, – 1.75, – 2.00 ……..
And first four terms of this A.P. will be – 1.25, – 1.50, – 1.75 and – 2.00.

Q3. For the following A.P.s, write the first term and the common difference.
(i) 3, 1, – 1, – 3 …
(ii) -5, – 1, 3, 7 …
(iii) 1/3, 5/3, 9/3, 13/3 ….
(iv) 0.6, 1.7, 2.8, 3.9 …

Ans.

(i) Given series, 3, 1, – 1, – 3 …

First term, a = 3
Common difference, d = Second term – First term
⇒  1 – 3 = -2
  d = -2

(ii) Given series, – 5, – 1, 3, 7 …

First term, a = -5
Common difference, d = Second term – First term
⇒ ( – 1)-( – 5) = – 1+5 = 4 =d

(iii) Given series, 1/3, 5/3, 9/3, 13/3 ….

First term, a = 1/3
Common difference, d = Second term – First term
⇒ 5/3 – 1/3 = 4/3 = d

(iv) Given series, 0.6, 1.7, 2.8, 3.9 …

First term, a = 0.6
Common difference, d = Second term – First term
⇒ 1.7 – 0.6
1.1 = d

Q4. Which of the following are APs? If they form an A.P. find the common difference d and write three more terms.
(i) 2, 4, 8, 16 …
(ii) 2, 5/2, 3, 7/2 ….
(iii) -1.2, -3.2, -5.2, -7.2 …
(iv) -10, – 6, – 2, 2 …
(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2
(vi) 0.2, 0.22, 0.222, 0.2222 ….
(vii) 0, – 4, – 8, – 12 …
(viii) -1/2, -1/2, -1/2, -1/2 ….
(ix) 1, 3, 9, 27 …
(x) a, 2a, 3a, 4a
(xi) a, a2, a3, a4
(xii) √2, √8, √18, √32 …
(xiii) √3, √6, √9, √12 …
(xiv) 12, 32, 52, 72
(xv) 12, 52, 72, 73

Ans.
(i) Given, 2, 4, 8, 16 …

Here, the common difference is:
a2a1 = 4 – 2 = 2
a3a2 = 8 – 4 = 4
a4a3 = 16 – 8 = 8
Since, an+1aor the common difference is not the same every time.
Therefore, the given series are not forming an A.P.

(ii) Given, 2, 5/2, 3, 7/2 ….

Here,
a2a1 = 5/2-2 = 1/2
a3a2 = 3-5/2 = 1/2
a4a3 = 7/2-3 = 1/2
Since, an+1an or the common difference is same every time.
Therefore, d = 1/2 and the given series are in A.P.
The next three terms are;
a5 = 7/2+1/2 = 4
a6 = 4 +1/2 = 9/2
a7 = 9/2 +1/2 = 5

(iii) Given, -1.2, – 3.2, -5.2, -7.2 …

Here,
a2a1 = (-3.2)-(-1.2) = -2
a3a2 = (-5.2)-(-3.2) = -2
a4a3 = (-7.2)-(-5.2) = -2
Since, an+1an or common difference is same every time.
Therefore, d = -2 and the given series are in A.P.
Hence, next three terms are;
a5 = – 7.2-2 = -9.2
a6 = – 9.2-2 = – 11.2
a7 = – 11.2-2 = – 13.2

(iv) Given, -10, – 6, – 2, 2 …

Here, the terms and their difference are;
a2a1 = (-6)-(-10) = 4
a3a2 = (-2)-(-6) = 4
a4a3 = (2 -(-2) = 4
Since, an+1an or the common difference is same every time.
Therefore, d = 4 and the given numbers are in A.P.
Hence, next three terms are;
a5 = 2+4 = 6
a6 = 6+4 = 10
a7 = 10+4 = 14

(v) Given, 3, 3+√2, 3+2√2, 3+3√2

Here,
a2a1 = 3+√2-3 = √2
a3a2 = (3+2√2)-(3+√2) = √2
a4a3 = (3+3√2) – (3+2√2) = √2
Since, an+1an or the common difference is same every time.
Therefore, d = √2 and the given series forms a A.P.
Hence, next three terms are;
a5 = (3+√2) +√2 = 3+4√2
a6 = (3+4√2)+√2 = 3+5√2
a7 = (3+5√2)+√2 = 3+6√2

(vi) 0.2, 0.22, 0.222, 0.2222 ….

Here,
a2a1 = 0.22-0.2 = 0.02
a3a2 = 0.222-0.22 = 0.002
a4a3 = 0.2222-0.222 = 0.0002
Since, an+1an or the common difference is not same every time.
Therefore, and the given series doesn’t forms a A.P.

(vii) 0, -4, -8, -12 …

Here,
a2a1 = (-4)-0 = -4
a3a2 = (-8)-(-4) = -4
a4a3 = (-12)-(-8) = -4
Since, an+1an or the common difference is same every time.
Therefore, d = -4 and the given series forms a A.P.
Hence, next three terms are;
a5 = -12-4 = -16
a6 = -16-4 = -20
a7 = -20-4 = -24

(viii) -1/2, -1/2, -1/2, -1/2 ….

Here,
a2a1 = (-1/2) – (-1/2) = 0
a3a2 = (-1/2) – (-1/2) = 0
a4a3 = (-1/2) – (-1/2) = 0
Since, an+1an or the common difference is same every time.
Therefore, d = 0 and the given series forms a A.P.
Hence, next three terms are;
a5 = (-1/2)-0 = -1/2
a6 = (-1/2)-0 = -1/2
a7 = (-1/2)-0 = -1/2

(ix) 1, 3, 9, 27 …

Here,
a2a1 = 3-1 = 2
a3a2 = 9-3 = 6
a4a3 = 27-9 = 18
Since, an+1an or the common difference is not same every time.
Therefore, and the given series doesn’t form a A.P.

(x) a, 2a, 3a, 4a

Here,
a2a1 = 2a= a
a3a2 = 3a-2a = a
a4a3 = 4a-3a = a
Since, an+1an or the common difference is same every time.
Therefore, d = a and the given series forms a A.P.
Hence, next three terms are;
a5 = 4a+a = 5a
a6 = 5a+a = 6a
a7 = 6a+a = 7a

(xi) a, a2, a3, a4 ...

Here,
a2a1 = a2a = a(a-1)
a3a2 = a a= a2(a-1)
a4a3 = a4a= a3(a-1)
Since, an+1an or the common difference is not same every time.
Therefore, the given series doesn’t forms a A.P.

(xii) √2, √8, √18, √32 …

Here,
a2a1 = √8-√2  = 2√2-√2 = √2
a3a2 = √18-√8 = 3√2-2√2 = √2
a4a3 = 4√2-3√2 = √2
Since, an+1an or the common difference is same every time.
Therefore, d = √2 and the given series forms a A.P.
Hence, next three terms are;
a5 = √32+√2 = 4√2+√2 = 5√2 = √50
a6 = 5√2+√2 = 6√2 = √72
a7 = 6√2+√2 = 7√2 = √98

(xiii) √3, √6, √9, √12 …

Here,
a2a1 = √6-√3 = √3×√2-√3 = √3(√2-1)
a3a2 = √9-√6 = 3-√6 = √3(√3-√2)
a4a3 = √12 – √9 = 2√3 – √3×√3 = √3(2-√3)
Since, an+1an or the common difference is not same every time.
Therefore, the given series doesn’t form a A.P.

(xiv) 12, 32, 52, 72

Or, 1, 9, 25, 49 …..
Here,
a2a1 = 9−1 = 8
a3a= 25−9 = 16
a4a3 = 49−25 = 24
Since, an+1an or the common difference is not same every time.
Therefore, the given series doesn’t form an A.P.

(xv) 12, 52, 72, 73 …

Or 1, 25, 49, 73 …
Here,
a2a1 = 25−1 = 24
a3a= 49−25 = 24
a4a3 = 73−49 = 24
Since, an+1an or the common difference is same every time.
Therefore, d = 24 and the given series forms a A.P.
Hence, next three terms are:
a5 = 73+24 = 97
a6 = 97+24 = 121
a= 121+24 = 145

The document Arithmetic Progressions (Exercise 5.1) NCERT Solutions | Mathematics (Maths) Class 10 is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
115 videos|479 docs|129 tests
115 videos|479 docs|129 tests
Download as PDF
Explore Courses for Class 10 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Download free EduRev App
Track your progress, build streaks, highlight & save important lessons and more!
Related Searches

Arithmetic Progressions (Exercise 5.1) NCERT Solutions | Mathematics (Maths) Class 10

,

Extra Questions

,

Arithmetic Progressions (Exercise 5.1) NCERT Solutions | Mathematics (Maths) Class 10

,

video lectures

,

Important questions

,

past year papers

,

study material

,

shortcuts and tricks

,

Summary

,

Free

,

Semester Notes

,

mock tests for examination

,

pdf

,

practice quizzes

,

Previous Year Questions with Solutions

,

Objective type Questions

,

Arithmetic Progressions (Exercise 5.1) NCERT Solutions | Mathematics (Maths) Class 10

,

Exam

,

Viva Questions

,

ppt

,

MCQs

,

Sample Paper

;