Table of contents |
|
Introduction to Plane Motion |
|
Motion in a Plane |
|
Projectile Motion: Plane Motion |
|
Solved Examples for You |
|
The physical quantities like work, temperature and distance can be represented in day to day life wholly by their magnitude alone. However, the relation of these physical quantities can be explained by the laws of arithmetic. In order to represent physical quantities like acceleration, displacement, and force, the direction is equally essential along with the magnitude. Let us now study Plane Motion.
Velocity refers to a physical vector quantity which is described by both magnitude and direction. The magnitude or scalar absolute value of velocity is referred to as speed. As stated by the Pythagorean Theorem, the magnitude of the velocity vector is given by –
| v | = v = √ ( vx ²+ vy ² )
Acceleration is defined by the rate of change of velocity of an object with respect to time. Numerically or in terms of components, it can be presented as –
Motion in a plane is also referred to as a motion in two dimensions. For example, circular motion, projectile motion, etc. For the analysis of such type of motion, the reference point will be made of an origin and the two coordinate axes X and Y.
Motion in a plane refers to the point where we consider motion in two dimensions as only two dimensions makes a plane. Here, considering the above, we take two axes into consideration – generally X-axis or Y – axes. In an attempt to derive the equation of the motion in a plane, we must know about motion in one direction.
The equations of motion in a straight line are:
v = u+at
s = ut+1/2 at²
v2 = u² + 2as
Where,
In a plane, we have to apply the same equations separately in both the directions: Y axis and Y-axis. This would give us the equations for motion in a plane.
vy = uy + ayt
sy = uy t +1/2 ay t²
v²y = u²y+2ay s
Where,
Similarly, for the X-axis:
vx = ux + ax t
sx= ux t+1/2 axt²
v²x = u²x+2 axs
Where,
One of the most common examples of motion in a plane is Projectile motion. In a projectile motion, the only acceleration acting is in the vertical direction which is acceleration due to gravity (g). Therefore, equations of motion can be applied separately in the X-axis and Y-axis to find the unknown parameters.Projectile Motion
The above diagram represents the motion of an object under the influence of gravity. It is an example of projectile motion (an special case of motion in a plane).
Q.1: The state with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful:
Ans:
Q.2: Read each statement below carefully and state with reasons, if it is true or false:
(a) The magnitude of a vector is always a scalar,
(b) each component of a vector is always a scalar,
Ans:
(a) True. The magnitude of a vector is a number. Hence, it is a scalar.
(b) False. Each component of a vector is also a vector.
1. What is plane motion? | ![]() |
2. What is projectile motion? | ![]() |
3. How is projectile motion different from other types of plane motion? | ![]() |
4. What factors affect the trajectory of a projectile? | ![]() |
5. Can a projectile motion be described using equations? | ![]() |
130 videos|483 docs|210 tests
|
130 videos|483 docs|210 tests
|