Page 1
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Let a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? and c
?
is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 find c . b
?
?
ekuk a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 rks c . b
?
?
dk eku
gksxk%
(1)
2
1
(2)
3
1
(3)
2
1
? (4)
3
1
?
Ans. (3)
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?
– ) b . a (
?
?
c
?
= ( a
?
. a
?
) b
?
– ( b . a
?
?
) a
?
– c 4
?
= 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? )
– c 4
?
= k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ?
c
?
=
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? )
c . b
?
?
=
2
1
?
2. Let coefficient of x
4
and x
2
in the expansion of
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is
equal to
ekuk
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4
rFkk x
2
ds xq.kkad Øe'k% ? rFkk ? gS rks ? – ? dk eku gS %
(1) 48 (2) 60 (3) –132 (4) –60
Ans. (3)
2[
6
C0 x
6
+
6
C2 x
4
(x
2
– 1) +
6
C4 x
2
(x
2
– 1)
2
+
6
C6 (x
2
– 1)
3
]
= 2[x
6
+ 15(x
6
– x
4
) + 15x
2
(x
4
– 2x
2
+ 1) + (–1 + 3x
2
– 3x
4
+ x
6
)]
= 2(32x
6
– 48x
4
+ 18x
2
– 1)
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132
Page 2
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Let a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? and c
?
is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 find c . b
?
?
ekuk a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 rks c . b
?
?
dk eku
gksxk%
(1)
2
1
(2)
3
1
(3)
2
1
? (4)
3
1
?
Ans. (3)
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?
– ) b . a (
?
?
c
?
= ( a
?
. a
?
) b
?
– ( b . a
?
?
) a
?
– c 4
?
= 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? )
– c 4
?
= k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ?
c
?
=
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? )
c . b
?
?
=
2
1
?
2. Let coefficient of x
4
and x
2
in the expansion of
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is
equal to
ekuk
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4
rFkk x
2
ds xq.kkad Øe'k% ? rFkk ? gS rks ? – ? dk eku gS %
(1) 48 (2) 60 (3) –132 (4) –60
Ans. (3)
2[
6
C0 x
6
+
6
C2 x
4
(x
2
– 1) +
6
C4 x
2
(x
2
– 1)
2
+
6
C6 (x
2
– 1)
3
]
= 2[x
6
+ 15(x
6
– x
4
) + 15x
2
(x
4
– 2x
2
+ 1) + (–1 + 3x
2
– 3x
4
+ x
6
)]
= 2(32x
6
– 48x
4
+ 18x
2
– 1)
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is
x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
(1)
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
(2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
(3)
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
(4)
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
Ans. (2)
Sol. 2x = 4by
'
? ?
'
y 2
x
b ?
So. differential equation is
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ?
vr% vody lehdj.k
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
then which of the following points lie on the plane
(1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
(1) (–1, 1,–1) (2) (–1, –1, –1) (3) (–1, –1,1) (4) (1, 1, –1)
Ans. (4)
Sol. d.r of normal to the plane
lery ds yEcor~ f}dvuqikr
3
10
,
3
10
,
3
10
1, 1, 1
midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
equation of plane x + y + z = 1
lery dk lehdj.k x + y + z = 1
5.
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
is equal to
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
dk eku gS %
(1) 1 (2) 10 (3) 5 (4) 0
Page 3
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Let a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? and c
?
is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 find c . b
?
?
ekuk a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 rks c . b
?
?
dk eku
gksxk%
(1)
2
1
(2)
3
1
(3)
2
1
? (4)
3
1
?
Ans. (3)
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?
– ) b . a (
?
?
c
?
= ( a
?
. a
?
) b
?
– ( b . a
?
?
) a
?
– c 4
?
= 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? )
– c 4
?
= k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ?
c
?
=
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? )
c . b
?
?
=
2
1
?
2. Let coefficient of x
4
and x
2
in the expansion of
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is
equal to
ekuk
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4
rFkk x
2
ds xq.kkad Øe'k% ? rFkk ? gS rks ? – ? dk eku gS %
(1) 48 (2) 60 (3) –132 (4) –60
Ans. (3)
2[
6
C0 x
6
+
6
C2 x
4
(x
2
– 1) +
6
C4 x
2
(x
2
– 1)
2
+
6
C6 (x
2
– 1)
3
]
= 2[x
6
+ 15(x
6
– x
4
) + 15x
2
(x
4
– 2x
2
+ 1) + (–1 + 3x
2
– 3x
4
+ x
6
)]
= 2(32x
6
– 48x
4
+ 18x
2
– 1)
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is
x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
(1)
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
(2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
(3)
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
(4)
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
Ans. (2)
Sol. 2x = 4by
'
? ?
'
y 2
x
b ?
So. differential equation is
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ?
vr% vody lehdj.k
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
then which of the following points lie on the plane
(1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
(1) (–1, 1,–1) (2) (–1, –1, –1) (3) (–1, –1,1) (4) (1, 1, –1)
Ans. (4)
Sol. d.r of normal to the plane
lery ds yEcor~ f}dvuqikr
3
10
,
3
10
,
3
10
1, 1, 1
midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
equation of plane x + y + z = 1
lery dk lehdj.k x + y + z = 1
5.
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
is equal to
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
dk eku gS %
(1) 1 (2) 10 (3) 5 (4) 0
Ans. (4)
Sol. Using L’Hospital
L gkWfLiVy ls
0 x
lim
? 1
) x 0 1 sin( x
= 0
6. Let P be the set of points (x, y) such that x
2
? y ? – 2x + 3. Then area of region bounded by points in set
P is
ekuk P fcUnqvksa (x, y) dk leqPp; bl izdkj gS fd x
2
? y ? – 2x + 3. rks P ds lHkh fcUnqvksa }kjk lEc) {ks=kQy
gksxk%
(1)
3
16
(2)
3
32
(3)
3
29
(4)
3
20
Ans. (2)
Sol. Point of intersection of y = x
2
& y = – 2x + 3 is
y = x
2
rFkk y = – 2x + 3 dk izfrPNsnu fcUnq
obtained by izkIr gksrk gS] x
2
+ 2x – 3 = 0
? x = – 3, 1
So, Area vr% {ks=kQy =
?
?
? ?
1
3
2
dx ) x x 2 3 ( = 3(4) – 2
?
?
?
?
?
?
?
?
?
2
3 1
2 2
–
?
?
?
?
?
?
?
?
?
3
3 1
3 3
= 12 + 8 –
3
28
=
3
32
–3 1
7. Let f(x) =
? ?
1 x
x x
2
?
: (1, 3) ? R then range of f(x) is (where [ . ] denotes greatest integer function)
ekuk f(x) =
? ?
1 x
x x
2
?
: (1, 3) ? R rks f(x) dk ifjlj gS (tgk¡ [ . ] egÙke iw.kkZad Qyu gS)
(1) ?
?
?
?
?
?
2
1
, 0 ?
?
?
?
?
?
?
5
7
,
5
3
(2) ?
?
?
?
?
?
2
1
,
5
2
?
?
?
?
?
?
?
5
4
,
5
3
(3) ?
?
?
?
?
?
1 ,
5
2
?
?
?
?
?
?
?
5
4
, 1 (4) ?
?
?
?
?
?
3
1
, 0 ?
?
?
?
?
?
?
5
4
,
5
2
Ans. (2)
Page 4
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Let a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? and c
?
is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 find c . b
?
?
ekuk a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 rks c . b
?
?
dk eku
gksxk%
(1)
2
1
(2)
3
1
(3)
2
1
? (4)
3
1
?
Ans. (3)
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?
– ) b . a (
?
?
c
?
= ( a
?
. a
?
) b
?
– ( b . a
?
?
) a
?
– c 4
?
= 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? )
– c 4
?
= k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ?
c
?
=
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? )
c . b
?
?
=
2
1
?
2. Let coefficient of x
4
and x
2
in the expansion of
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is
equal to
ekuk
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4
rFkk x
2
ds xq.kkad Øe'k% ? rFkk ? gS rks ? – ? dk eku gS %
(1) 48 (2) 60 (3) –132 (4) –60
Ans. (3)
2[
6
C0 x
6
+
6
C2 x
4
(x
2
– 1) +
6
C4 x
2
(x
2
– 1)
2
+
6
C6 (x
2
– 1)
3
]
= 2[x
6
+ 15(x
6
– x
4
) + 15x
2
(x
4
– 2x
2
+ 1) + (–1 + 3x
2
– 3x
4
+ x
6
)]
= 2(32x
6
– 48x
4
+ 18x
2
– 1)
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is
x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
(1)
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
(2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
(3)
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
(4)
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
Ans. (2)
Sol. 2x = 4by
'
? ?
'
y 2
x
b ?
So. differential equation is
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ?
vr% vody lehdj.k
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
then which of the following points lie on the plane
(1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
(1) (–1, 1,–1) (2) (–1, –1, –1) (3) (–1, –1,1) (4) (1, 1, –1)
Ans. (4)
Sol. d.r of normal to the plane
lery ds yEcor~ f}dvuqikr
3
10
,
3
10
,
3
10
1, 1, 1
midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
equation of plane x + y + z = 1
lery dk lehdj.k x + y + z = 1
5.
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
is equal to
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
dk eku gS %
(1) 1 (2) 10 (3) 5 (4) 0
Ans. (4)
Sol. Using L’Hospital
L gkWfLiVy ls
0 x
lim
? 1
) x 0 1 sin( x
= 0
6. Let P be the set of points (x, y) such that x
2
? y ? – 2x + 3. Then area of region bounded by points in set
P is
ekuk P fcUnqvksa (x, y) dk leqPp; bl izdkj gS fd x
2
? y ? – 2x + 3. rks P ds lHkh fcUnqvksa }kjk lEc) {ks=kQy
gksxk%
(1)
3
16
(2)
3
32
(3)
3
29
(4)
3
20
Ans. (2)
Sol. Point of intersection of y = x
2
& y = – 2x + 3 is
y = x
2
rFkk y = – 2x + 3 dk izfrPNsnu fcUnq
obtained by izkIr gksrk gS] x
2
+ 2x – 3 = 0
? x = – 3, 1
So, Area vr% {ks=kQy =
?
?
? ?
1
3
2
dx ) x x 2 3 ( = 3(4) – 2
?
?
?
?
?
?
?
?
?
2
3 1
2 2
–
?
?
?
?
?
?
?
?
?
3
3 1
3 3
= 12 + 8 –
3
28
=
3
32
–3 1
7. Let f(x) =
? ?
1 x
x x
2
?
: (1, 3) ? R then range of f(x) is (where [ . ] denotes greatest integer function)
ekuk f(x) =
? ?
1 x
x x
2
?
: (1, 3) ? R rks f(x) dk ifjlj gS (tgk¡ [ . ] egÙke iw.kkZad Qyu gS)
(1) ?
?
?
?
?
?
2
1
, 0 ?
?
?
?
?
?
?
5
7
,
5
3
(2) ?
?
?
?
?
?
2
1
,
5
2
?
?
?
?
?
?
?
5
4
,
5
3
(3) ?
?
?
?
?
?
1 ,
5
2
?
?
?
?
?
?
?
5
4
, 1 (4) ?
?
?
?
?
?
3
1
, 0 ?
?
?
?
?
?
?
5
4
,
5
2
Ans. (2)
Sol f(x)
?
?
?
?
?
?
?
?
?
?
?
) 3 , 2 [ x ;
1 x
x 2
) 2 , 1 ( x ;
1 x
x
2
2
? f(x) is a decreasing function
? f(x) âkleku Qyu gSA
? y ? ?
?
?
?
?
?
2
1
,
5
2
?
?
?
?
?
?
?
5
4
,
10
6
? y ? ?
?
?
?
?
?
2
1
,
5
2
?
?
?
?
?
?
?
5
4
,
5
3
8. Let A =
?
?
?
?
?
?
4 9
2 2
and I =
?
?
?
?
?
?
1 0
0 1
then value of 10 A
–1
is –
ekuk A =
?
?
?
?
?
?
4 9
2 2
rFkk I =
?
?
?
?
?
?
1 0
0 1
rks 10 A
–1
dk eku gksxk %
(1) 4I – A (2) 6 I – A (3) A – 4 I (4) A – 6 I
Ans. (4)
Sol. Characteristics equation of matrix ‘A’ is
vkO;wg ‘A’ dh vfHkyk{kf.kd lehdj.k gS &
0
x – 4 9
2 x – 2
? ? ? x
2
– 6x – 10 = 0
? A
2
– 6A – 10 I = 0
? ? 10A
–1
= A – 6I
9. Solution set of 3
x
(3
x
–1) + 2 = |3
x
–1| + |3
x
– 2| contains
(1) singleton set (2) two elements
(3) at least four elements (4) infinite elements
3
x
(3
x
–1) + 2 = |3
x
–1| + |3
x
– 2| dk gy leqPPk; j[krk gSA
(1) ,d gy (2) nks gy (3) de ls de pkj gy (4) vUur gy
Ans. (1)
Sol. Let 3
x
= t
t(t –1) + 2 = |t –1| + |t –2|
t
2
– t + 2 = |t –1| + |t –2|
7/4
2
1
a 1 2
are positive solution
t = a
3
x
= a
x = a log
3
so singleton set
Page 5
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Let a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? and c
?
is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 find c . b
?
?
ekuk a
?
= k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
= k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
= 0 rks c . b
?
?
dk eku
gksxk%
(1)
2
1
(2)
3
1
(3)
2
1
? (4)
3
1
?
Ans. (3)
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?
– ) b . a (
?
?
c
?
= ( a
?
. a
?
) b
?
– ( b . a
?
?
) a
?
– c 4
?
= 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? )
– c 4
?
= k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ?
c
?
=
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? )
c . b
?
?
=
2
1
?
2. Let coefficient of x
4
and x
2
in the expansion of
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is
equal to
ekuk
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4
rFkk x
2
ds xq.kkad Øe'k% ? rFkk ? gS rks ? – ? dk eku gS %
(1) 48 (2) 60 (3) –132 (4) –60
Ans. (3)
2[
6
C0 x
6
+
6
C2 x
4
(x
2
– 1) +
6
C4 x
2
(x
2
– 1)
2
+
6
C6 (x
2
– 1)
3
]
= 2[x
6
+ 15(x
6
– x
4
) + 15x
2
(x
4
– 2x
2
+ 1) + (–1 + 3x
2
– 3x
4
+ x
6
)]
= 2(32x
6
– 48x
4
+ 18x
2
– 1)
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is
x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
(1)
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
(2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
(3)
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
(4)
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
Ans. (2)
Sol. 2x = 4by
'
? ?
'
y 2
x
b ?
So. differential equation is
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ?
vr% vody lehdj.k
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
then which of the following points lie on the plane
(1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
(1) (–1, 1,–1) (2) (–1, –1, –1) (3) (–1, –1,1) (4) (1, 1, –1)
Ans. (4)
Sol. d.r of normal to the plane
lery ds yEcor~ f}dvuqikr
3
10
,
3
10
,
3
10
1, 1, 1
midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
equation of plane x + y + z = 1
lery dk lehdj.k x + y + z = 1
5.
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
is equal to
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
dk eku gS %
(1) 1 (2) 10 (3) 5 (4) 0
Ans. (4)
Sol. Using L’Hospital
L gkWfLiVy ls
0 x
lim
? 1
) x 0 1 sin( x
= 0
6. Let P be the set of points (x, y) such that x
2
? y ? – 2x + 3. Then area of region bounded by points in set
P is
ekuk P fcUnqvksa (x, y) dk leqPp; bl izdkj gS fd x
2
? y ? – 2x + 3. rks P ds lHkh fcUnqvksa }kjk lEc) {ks=kQy
gksxk%
(1)
3
16
(2)
3
32
(3)
3
29
(4)
3
20
Ans. (2)
Sol. Point of intersection of y = x
2
& y = – 2x + 3 is
y = x
2
rFkk y = – 2x + 3 dk izfrPNsnu fcUnq
obtained by izkIr gksrk gS] x
2
+ 2x – 3 = 0
? x = – 3, 1
So, Area vr% {ks=kQy =
?
?
? ?
1
3
2
dx ) x x 2 3 ( = 3(4) – 2
?
?
?
?
?
?
?
?
?
2
3 1
2 2
–
?
?
?
?
?
?
?
?
?
3
3 1
3 3
= 12 + 8 –
3
28
=
3
32
–3 1
7. Let f(x) =
? ?
1 x
x x
2
?
: (1, 3) ? R then range of f(x) is (where [ . ] denotes greatest integer function)
ekuk f(x) =
? ?
1 x
x x
2
?
: (1, 3) ? R rks f(x) dk ifjlj gS (tgk¡ [ . ] egÙke iw.kkZad Qyu gS)
(1) ?
?
?
?
?
?
2
1
, 0 ?
?
?
?
?
?
?
5
7
,
5
3
(2) ?
?
?
?
?
?
2
1
,
5
2
?
?
?
?
?
?
?
5
4
,
5
3
(3) ?
?
?
?
?
?
1 ,
5
2
?
?
?
?
?
?
?
5
4
, 1 (4) ?
?
?
?
?
?
3
1
, 0 ?
?
?
?
?
?
?
5
4
,
5
2
Ans. (2)
Sol f(x)
?
?
?
?
?
?
?
?
?
?
?
) 3 , 2 [ x ;
1 x
x 2
) 2 , 1 ( x ;
1 x
x
2
2
? f(x) is a decreasing function
? f(x) âkleku Qyu gSA
? y ? ?
?
?
?
?
?
2
1
,
5
2
?
?
?
?
?
?
?
5
4
,
10
6
? y ? ?
?
?
?
?
?
2
1
,
5
2
?
?
?
?
?
?
?
5
4
,
5
3
8. Let A =
?
?
?
?
?
?
4 9
2 2
and I =
?
?
?
?
?
?
1 0
0 1
then value of 10 A
–1
is –
ekuk A =
?
?
?
?
?
?
4 9
2 2
rFkk I =
?
?
?
?
?
?
1 0
0 1
rks 10 A
–1
dk eku gksxk %
(1) 4I – A (2) 6 I – A (3) A – 4 I (4) A – 6 I
Ans. (4)
Sol. Characteristics equation of matrix ‘A’ is
vkO;wg ‘A’ dh vfHkyk{kf.kd lehdj.k gS &
0
x – 4 9
2 x – 2
? ? ? x
2
– 6x – 10 = 0
? A
2
– 6A – 10 I = 0
? ? 10A
–1
= A – 6I
9. Solution set of 3
x
(3
x
–1) + 2 = |3
x
–1| + |3
x
– 2| contains
(1) singleton set (2) two elements
(3) at least four elements (4) infinite elements
3
x
(3
x
–1) + 2 = |3
x
–1| + |3
x
– 2| dk gy leqPPk; j[krk gSA
(1) ,d gy (2) nks gy (3) de ls de pkj gy (4) vUur gy
Ans. (1)
Sol. Let 3
x
= t
t(t –1) + 2 = |t –1| + |t –2|
t
2
– t + 2 = |t –1| + |t –2|
7/4
2
1
a 1 2
are positive solution
t = a
3
x
= a
x = a log
3
so singleton set
Hindi. ekuk fd 3
x
= t
t(t –1) + 2 = |t –1| + |t –2|
t
2
– t + 2 = |t –1| + |t –2|
7/4
2
1
a 1 2
/kukRed gy gSA
t = a
3
x
= a
x = a log
3
,dy leqPp;
10. Mean and variance of 20 observation are 10 and 4. It was found, that in place of 11, 9 was taken by
mistake find correct variance.
20 vakdM+ksa dk ek/; rFkk pfjrk Øe'k% 10 rFkk 4 gSA ;fn 11 ds LFkku ij xyrh ls 9 fy;k x;k gS rks lgh pfjrk
gS&
(1) 3.99 (2) 3.98 (3) 4.01 (4) 4.02
Ans. (1)
Sol.
20
x
i
?
= 10 …….(i)
100 –
20
x
2
i
?
= 4 …….(ii)
2
i
x ? = 104 × 20 = 2080
Actual mean lgh ek/; =
20
11 9 – 200 ?
=
20
202
Variance pfjrk =
20
121 81 – 2080 ?
–
2
20
202
?
?
?
?
?
?
=
20
2120
– (10.1)
2
= 106 – 102.01 = 3.99
11. ?x + 2y + 2z = 5
2 ?x + 3y + 5z = 8
? 4x + ?y + 6z = 10
for the system of equation check the correct option.
(1) Infinite solutions when ? = 8 (2) Infinite solutions when ? = 2
(3) no solutions when ? = 8 (4) no solutions when ? = 2
Read More