JEE Exam  >  JEE Notes  >  JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions PDF Download

Q.1. JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions           (JEE Main 2023)
(a) π/3
(b) π/4
(c) π/6
(d) π/2

Ans. a
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.2. Considering only the principal values of the inverse trigonometric functions, the value of JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis      (JEE Advanced 2022) 

Ans. Between 2.35 and 2.37
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
We know, JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.3. The sum of the absolute maximum and absolute minimum values of the function f(x) = tan−1⁡ (sin ⁡x − cos ⁡x) in the interval [0, π] is:      (JEE Main 2022)
(a) 0
(b) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(c) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(d) -π/12

Ans. c
f(x) = tan−1(sin ⁡x − cos ⁡x), [0, π]
Let g(x)  = sin x - cos x
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
and tan−1x is an increasing function
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.4. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos−1⁡(x) − 2sin−1⁡(x) = cos−1⁡(2x) is equal to:      (JEE Main 2022)
(a) 0
(b) 1
(c) 12
(d) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. a
cos−1x − 2sin−1 x = cos−12x
For Domain : x ∈ [−1/2, 1/2]
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
⇒ cos−1x + 2 cos−1x = π + cos−12x
⇒ cos⁡ (3 cos−1x) = −cos⁡(cos−12x)
⇒ 4x3 = x
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.5. JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions  then the value of JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions      (JEE Main 2022)
(a) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(b) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(c) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(d) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
Let sin−1x = θ
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.6. JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions is equal to:      (JEE Main 2022)
(a) 1
(b) 2
(c) 1/4
(d) 5/4

Ans. b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
= tam[tan -12] = 2


Q.7. Let α = tan⁡(5π/16 sin ⁡(2cos−1(1/√5))) and β = cos⁡(sin−1(4/5) + sec−1(5/3)) where the inverse trigonometric functions take principal values. Then, the equation whose roots are α and β is:      (JEE Main 2022)
(a) 15x2 − 8x − 7 = 0
(b) 5x2 − 12x + 7 = 0
(c) 25x2 − 18x − 7 = 0
(d) 25x2 − 32x + 7 = 0

Ans. c
Given,
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
We know,
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
= 1
∴ α = 1
Also given,
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
∴ The quadratic equation with roots α and β is
x2 − (α + β)x + αβ = 0
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

⇒ 25x2 − 18x − 7 = 0


Q.8. Let m and M respectively be the minimum and the maximum values of f(x) = sin−12x + sin⁡ 2x + cos−12x + cos ⁡2x, x ∈ [0, π/8]. Then m + M is equal to:      (JEE Main 2022)
(a) 1 + 2 + π
(b) (1 +2 )π

(c) π + 2
(d) 1 + π

Ans. a
f(x) = sin−1(2x) + sin ⁡2x + cos−1(2x) + cos⁡ 2x
= sin−1(2x) + cos−1(2x) + sin⁡ 2x + cos ⁡2x
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
f(x) is maximum when JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions is maximum means x = π/8 or
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
f(x) is minimum when sin JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions  is minimum means x = 0 or JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.9. The set of all values of k for which (tan−1x)+ (cot−1x)= kπ3, x ∈ R, is the interval:      (JEE Main 2022)
(a) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(b) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(c) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(d) JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. a
(tan−1x)3 + (cot−1x)3 = kπ3
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
This is a quadratic equation of t.
Here, coefficient of t2 term is 3π/2 which is > 0.
∴ It is a upward parabola.
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
f″(t) = 3π > 0
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
⇒ t = π/4 (minima)
∴ vertex of graph at  π/4
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.10. Let x ∗ y = x2 + y3 and (x ∗ 1) ∗ 1 = x ∗ (1 ∗ 1).

Then a value ofJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions        (JEE Main 2022)
(a) π/4 
(b) π/3 
(c) π/2 
(d) π/6

Ans. b
Given,

x ∗ y = x2 + y3

∴ x ∗ 1 = x2 + 1= x+ 1

Now, (x ∗ 1) ∗ 1 = (x+ 1) ∗ 1

⇒ (x ∗ 1) ∗ 1 = (x2 + 1)2 + 13

⇒ (x ∗ 1) ∗ 1 = x4 + 1 + 2x2 + 1

Also, x ∗ (1 ∗ 1)

= x ∗ (1+ 13)

= x ∗ 2

= x2 + 23

= x2 + 8

Given that,

(x ∗ 1) ∗ 1 = x ∗ (1 ∗ 1)

∴ x4 + 1 + 2x2 + 1 = x2 + 8

⇒ x4 + x2 − 6 = 0

⇒ x4 + 3x2 − 2x− 6 = 0

⇒ x2(x2 + 3) − 2(x3 + 3) = 0

⇒ (x2 + 3)(x2 − 2) = 0

⇒ x2 = 2, −3

[x= −3 not possible as square of anything should be always possible]

∴ x2 = 2

∴ Now,
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.11. The value ofJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions        (JEE Main 2022)
(a) 26/25
(b) 25/26
(c) 50/51
(d) 52/51

Ans. a
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.12.JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis equal to:      (JEE Main 2022)
(a) 11π/12
(b) 17π/12
(c) 31π/12
(d)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. a
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.13. If the inverse trigonometric functions take principal values then

JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis equal to:      (JEE Main 2022)
(a) 0
(b) π/4
(c) π/3
(d) π/6

Ans. c
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.14. The value ofJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis equal to:      (JEE Main 2022)
(a)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(b)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(c)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(d)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.15. For k ∈ R, let the solutions of the equation cos⁡(sin−1⁡(xcot⁡(tan−1⁡(cos⁡(sin−1⁡x))))) = k,JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsbe α and β, where the inverse trigonometric functions take only principal values. If the solutions of the equation x2 − bx − 5 = 0 are 1/α2 + 1/β2 and α/β, then b/k2 is equal to ____________.       (JEE Main 2022)

Ans. 12
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.16. Let x = sin⁡(2tan−1α) andJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions. If S = {a ∈ R : y2 = 1−x}, thenJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis equal to _______________.       (JEE Main 2022)

Ans. 130
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
Now, y= 1 − x
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
⇒ 1 + α2 = 5 + 5α2 − 10α
⇒ 2α2 − 5α + 2 = 0
∴ α = 2, 1/2
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.17. JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis equal to ____________.       (JEE Main 2022)

Ans. 29


Q.18. For any positive integer n, let Sn : (0, )  R be defined byJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionswhere for any x  R, cot−1(x) ∈ (0, π) and tan−1(x) ∈JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions. Then which of the following statements is (are) TRUE?        (JEE Advanced 2021) 
(a)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(b)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(c)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(d)
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. a, b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
Option (a) is correct.
For option (b)
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
Option (b) is correct.
For option (c) 
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
⇒ 4x2 − 3x + 1 = 0 has no real root.
Option (c) is incorrect.
For option (d) 
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionswhich is greater than 1/2 for n  3
Option (d) is incorrect.


Q.19. cos−1(cos⁡(−5)) + sin−1(sin⁡(6)) − tan−1(tan⁡(12)) is equal to:       (JEE Main 2021)
(The inverse trigonometric functions take the principal values)
(a) 3π − 11
(b) 4π − 9
(c) 4π − 11
(d) 3π + 1

Ans. c
cos−1(cos⁡(−5)) + sin−1(sin⁡(6)) − tan−1(tan⁡(12))
= (2π − 5) + (6 − 2π) − (12 − 4π)
= 4π − 11.


Q.20. Let M and m respectively be the maximum and minimum values of the function f(x) = tan−1 (sin x + cos x) in [0, π/2], then the value of tan(M − m) is equal to:       (JEE Main 2021)
(a) 2 + √3
(b) 2 − √3
(c) 3 + 2√2
(d) 3 − 2√2

Ans. d
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.21. If (sin−1x)2 − (cos−1x)= a; 0 < x < 1, a ≠ 0, then the value of 2x2 − 1 is:       (JEE Main 2021)
(a) cos⁡(4a/π)
(b) sin⁡(2a/π)
(c) cos⁡(2a/π)
(d) sin⁡(4a/π)

Ans. b
Given a = sin−1x)2 − (cos−1x)2
= (sin−1x + cos−1x)(sin−1x − cos−1x)
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions 
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.22.JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsthen the value of tan p is:       (JEE Main 2021)
(a) 101/102
(b) 50/51
(c) 100
(d) 51/50

Ans. b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.23. LetJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions0 < x < 1. Then:       (JEE Main 2021)
(a) (1 − x)2f′(x) − 2(f(x))2 = 0
(b) (1 + x)2f′(x) + 2(f(x))2 = 0
(c) (1 − x)2f′(x) + 2(f(x))2 = 0
(d) (1 + x)2f′(x) − 2(f(x))2 = 0

Ans. c
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
or (1 − x)2f′(x) + 2(f(x))2 = 0


Q.24. The value of tan⁡(2tan−1(3/5) + sin−1(5/13)) is equal to:       (JEE Main 2021)
(a) −181/69
(b) 220/21
(c) −291/76
(d) 151/63

Ans. b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.25. The number of real roots of the equation  JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis:       (JEE Main 2021)
(a)1
(b) 2
(c) 4
(d) 0

Ans. d
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
For equation to be defined,
x2 + x  0
 x2 + x + 1  1
 Only possibility that the equation is defined
x2 + x = 0  x = 0; x = 1
None of these values satisfy
 No of roots = 0 


Q.26. The number of solutions of the equationJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsfor x ∈ [−1, 1], and [x] denotes the greatest integer less than or equal to x, is:       (JEE Main 2021)
(a) 0
(b) Infinite
(c) 2
(d) 4

Ans. a
There are three cases possible for x ∈ [−1, 1]
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
 sin−1(1) + cos−1(0) = x2
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
⇒ x = ±√π  (Reject)
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
 sin−1(0) + cos−1(−1) = x2
⇒ 0 + π = x2
⇒ x = ±√x  (Reject)
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
 sin−1(0) + cos−1(0) = x2
⇒ x2 − π ⇒ x − ±√x (Reject)
 No solution. There, the correct answer is (a).


Q.27. If cot−1(α) = cot−1 2 + cot−1 8 + cot−1 18 + cot−1 32 + ...... upto 100 terms, then α is:       (JEE Main 2021) 
(a) 1.02
(b) 1.03
(c) 1.01
(d) 1.00

Ans. c
cot−1(α) = cot−12 + cot−18 + cot−118 + cot−132 +....100 terms
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
= tan−1201 − tan−11
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
= cot−1(1.01)
Hence α = 1.01


Q.28. The sum of possible values of x for
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis:       (JEE Main 2021) 
(a)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(b)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(c)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(d)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. a
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
So, only solution is x = − 8 =JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions 


Q.29. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy sin−1(3x/5) + sin−1(4x/5) = sin−1x is equal to:       (JEE Main 2021) 
(a) 2
(b) 0
(c) 3
(d) 1

Ans. c
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
Squaring we get
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
⇒ x2 = 1
Put x = 0, 1, 1 in the original equation
We see that all values satisfy the original equation.
Number of solution = 3 


Q.30. If 0 < a, b < 1, and tan−1a + tan−1b = π/4, then the value of JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions       (JEE Main 2021) 
(a) loge2
(b) e
(c) loge(e/2)
(d) e2 = 1

Ans. a
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
a + b = 1  ab
(a + 1)(b + 1) = 2
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
= loge(1 + a) + loge(1 + b)
(∵ expansion of loge(1 + x))
= loge[(1 + a)(1 + b)]
= loge2


Q.31. IfJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions0 < x < 1, then the value of 

JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functionsis:       (JEE Main 2021) 
(a)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(b)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
(c) 1 - y2
(d)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. d
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.32. cosec[2cot−1(5) + cos−1(4/5)] is equal to:        (JEE Main 2021) 
(a) 75/56
(b) 65/56
(c) 56/33
(d) 65/33

Ans. b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
= cos⁡ec(θ + ϕ)
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions


Q.33. A possible value ofJEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions        (JEE Main 2021) 
(a) √7 − 1
(b) 1/√7
(c) 2√2 − 1
(d)JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

Ans. b
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions
JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

The document JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions is a part of JEE category.
All you need of JEE at this link: JEE
Download as PDF

Top Courses for JEE

Related Searches

past year papers

,

Extra Questions

,

mock tests for examination

,

Previous Year Questions with Solutions

,

Free

,

MCQs

,

Important questions

,

Exam

,

JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

,

video lectures

,

Viva Questions

,

ppt

,

Sample Paper

,

study material

,

practice quizzes

,

JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

,

Objective type Questions

,

Summary

,

shortcuts and tricks

,

pdf

,

Semester Notes

,

JEE Main Previous Year Questions (2021-23): Inverse Trigonometric Functions

;