Using the properties of determinants in Exercises 1 to 6, evaluate:
Q.1.
Ans.
Let
C1 → C1 - C2
= (x + 1) (x2 – 2x + 2) – 0
= x3 – 2x2 + 2x + x2 – 2x + 2 = x3 – x2 + 2
Q.2.
Ans.
Let
C1 → C1 + C2 + C3
(Taking a + x + y + z common)
R1 → R1 - R2, R2 → R2 - R3
Expanding along C1 = (a + x+y +z) = a2(a + x + y + z)
Q.3.
Ans.
Let
Taking x2, y2 and z2 common from C1, C2 and C3 respectively
Expanding along R1
= x2y2z2 [- x(0 - yz) + x( yz - 0)]
= x2y2z2(xyz + xyz) = x2y2z2(2xyz) = 2x3y3z3
Q.4.
Ans.
Let
C1 → C1 + C2 + C3
Taking (x + y + z) common from C1
R1 → R1 - R2, R2 → R2 - R3
Expanding along C1
= (x+y+ z) [(-x - 2y)(-y - 2z) -(2y +z)(-x +y)]
= (x + y + z) (xy + 2zx + 2y2 + 4yz + 2xy – 2y2 + zx – zy)
= (x + y + z) (3xy + 3zx + 3yz) = 3(x + y + z) (xy + yz + zx)
Q.5.
Ans.
Let
C1 → C1 + C2 + C3
Taking (3x + 4) common from C1
R1 → R1 - R2, R2 → R2 - R3
Expanding along C1
Q.6.
Ans.
Let
R1 → R1 + R2 + R3
Taking (a + b + c) common from R1
C1 → C1 - C2, C2 → C2 - C3
Taking (b + c + a) from C1 and C2
Expanding along R1
Using the properties of determinants in Exercises 7 to 9, prove that:
Q.7.
Ans.
L.H.S. =
R1 → xR1, R2 → yR2, R3 → zR3 and dividing the determinant by xyz.
Taking xyz common from C1 and C2
C3 → C3 + C1
Taking (xy + yz + zx) common from C3
[∵ C2 and C3 are identical]
L.H.S. = R.H.S. Hence proved.
Q.8.
Ans.
L.H.S. =
C1 → C1 - (C2 + C3)
Taking –2 common from C1
R2 → R2 - R3
Expanding along C1
= - 2 [ x - zy- zy ] = – 2(– 2xyz) = 4xyz R.H.S.
L.H.S. = R.H.S.
Hence, proved.
Q.9.
Ans.
L.H.S.=
R1 → R1 - R2, R2 → R2 - R3
Taking (a – 1) common from C1 and C2
Expanding along C3
= (a – 1)2 (a + 1 – 2) = (a – 1)2 (a – 1) = (a – 1)3 R.H.S.
L.H.S.= R.H.S.
Hence, proved.
Q.10. If A + B + C = 0, then prove that
Ans.
L.H.S. =
Expanding along C1
= 1(1 – cos2 A) – cos C(cos C – cos A cos B) + cos B (cos A cos C – cos B)
= sin2 A – cos2 C + cos A cos B cos C + cos A cos B cos C – cos2 B
= sin2 A – cos2 B – cos2 C + 2 cos A cos B cos C
= – cos (A + B) × cos (A - B) - cos2 C + 2 cos A cos B cos C
[∵ sin2 A - cos2 B= - cos (A +B)× cos (A - B)]
= - cos ( - C) × cos (A - B) + cos C (2 cos A cos B - cos C) [∵ A + B + C = 0]
= – cos C(cos A cos B + sin A sin B) + cos C(2 cos A cos B – cos C)
= – cos C(cos A cos B + sin A sin B – 2 cos A cos B + cos C)
= – cos C(– cos A cos B + sin A sin B + cos C)
= cos C(cos A cos B – sin A sin B – cos C)
= cos C[cos(A + B) – cos C ]
= cos C[cos (– C) – cos C] [∵ A + B = - C]
= cos C[cos C - cos C] = cos C × 0 = 0 R.H.S.
L.H.S. = R.H.S.
Hence, proved.
Q.11. If the co-ordinates of the vertices of an equilateral triangle with sides of length ‘a’ are (x1, y1), (x2, y2), (x3, y3), then
Ans.
Area of triangle whose vertices are (x1, y1), (x2, y2) and (x3, y3)
Let⇒
But area of equilateral triangle whose side is ‘a‘ =
Hence, proved.
Q.12. Find the value of θ satisfying
Ans.
Let
C1 → C1 - C2
⇒
Taking 7 common from C1
⇒
⇒
Expanding along C1
⇒
⇒ –2 + 7 sin 3θ + 2 (cos 2θ – 3 sin 3θ) = 0
⇒ – 2 + 7 sin 3θ + 2 cos 2θ – 6 sin 3θ = 0
⇒ – 2 + 2 cos 2θ + sin 3θ = 0
⇒ – 2 + 2 (1 – 2 sin2 θ) + 3 sin θ – 4 sin3 θ = 0
⇒ – 2 + 2 – 4 sin2 θ + 3 sin θ – 4 sin3 θ = 0
⇒ – 4 sin3 θ – 4 sin2 θ + 3 sin θ = 0
⇒ – sin θ(4 sin2 θ + 4 sin θ – 3) = 0
sin θ = 0 or 4 sin2 θ + 4 sin θ – 3 = 0
∴ θ = nπ or 4 sin2 θ + 6 sin θ – 2 sin θ – 3 = 0 when n ∈ I
⇒ 2 sin θ(2 sin θ + 3) - 1 (2 sin θ + 3) = 0
⇒ (2 sin θ + 3)(2 sin θ – 1) = 0
⇒ 2 sin θ + 3 = 0 or 2 sin θ - 1 = 0
is not possible as – 1 ≤ x ≤ 1
Hence,
Q.13. If, then find values of x.
Ans.
Let
R1 → R1 + R2 + R3
⇒
Taking (12 + x) common from R1,
⇒
C1 → C1 - C2, C2 → C2 - C3
Expanding along R1
⇒
(12 + x) (4x2 – 0) = 0 ⇒ 12 + x = 0 or 4x2 = 0
⇒ x = -12 or x = 0
Q.14. If a1, a2, a3, …, ar are in G.P., then prove that the determinant
is independent of r.
Ans.
If a1, a2, a3, … ar be the terms of G.P., then
an = ARn–1
(where A is the first term and R is the common ratio of the G.P. )
∴ar+1 = ARr+1–1 = ARr; ar+5 = ARr+5–1 = ARr+4
ar+9 = ARr +9-1 = ARr +8 ; ar+7 = ARr+7–1 = ARr+6
ar+11 = ARr+11–1 = ARr+10; ar+15 = ARr+15–1 = ARr+14
ar+17 = AR r +17-1 = ARr +16 ; ar+21 = ARr+21–1 = ARr+20
∴ The determinant becomes
Taking ARr, ARr+6 and ARr+10 common from R1, R2 and R3 respectively.
[∵ R1 and R2 are identical rows]
= 0
Hence, the given determinant is independent of r.
Q.15. Show that the points (a + 5, a – 4), (a – 2, a + 3) and (a, a) do not lie on a straight line for any value of a.
Ans.
If the given points lie on a straight line, then the area of the triangle formed by joining the points pairwise is zero.
R1 → R1 - R2, R2 → R2 - R3
⇒
Expanding along C3
As 7 ≠ 0. Hence,, the three points do not lie on a straight line for any value of a.
Q.16. Show that the ∆ABC is an isosceles triangle if the determinant
Ans.
C1 → C1 - C2, C2 → C2 - C3
Taking (cos A – cos B) and (cos B – cos C) common from C1 and C2 respectively.
⇒ (cos A - cos B) (cos B- cos C) [cos B + cos C + 1 - cos A - cos B - 1] = 0
⇒ (cos A – cos B) (cos B – cos C) (cos C – cos A) = 0
cos A – cos B = 0 or cos B – cos C = 0
or cos C – cos A = 0
⇒ cos A = cos B or cos B = cos C or cos C = cos A
⇒ ∠A = ∠C or ∠B = ∠C ⇒ ∠A = ∠B
Hence, ΔABC is an isosceles triangle.
Q.17. Find A–1 ifand show that
Ans.
Here,
= 0 – 1 (0 – 1) + 1 (1 – 0)
= 1 + 1 = 2 ≠ 0 (non-singular matrix.)
Now, co-factors,
∴
Now, A2 =
Hence, A2 =
Now, we have to prove that
Hence, proved.
Long Answer (L.A.)
Q.18. Iffind A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.
Ans.
Given that
= 1(–1 – 2) – 2(–2 – 0) + 0
= – 3 + 4 = 1 ≠ 0 (non-singular matrix.)
Now co-factors,
∴
⇒
Now, the system of linear equations is given by x – 2y = 10, 2x – y – z = 8 and – 2y + z = 7, which is in the form of CX = D.
where
∵ (AT)–1 = (A–1)T
Hence, x = 0, y = – 5 and z = – 3
Q.19. Using matrix method, solve the system of equation
3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2.
Ans.
Given that
3x + 2y – 2z = 3
x + 2y + 3z = 6
2x – y + z = 2
Let
= 3(2 + 3) – 2(1 – 6) – 2(– 1 – 4)
= 15 + 10 + 10 = 35 ≠ 0 non-singular matrix
Now, co-factors,
Hence, x = 1, y = 1 and z = 1.
Q.20. Givenfind BA an⇒d use this to solve the system of equations y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17.
Ans.
We have,
BA =
∴
The given equations can be re-write as,
x – y = 3, 2x + 3y + 4z = 17 and y + 2z = 7
∴
⇒
Hence, x = 2, y = – 1 and z = 4
Q.21. If a + b + c ≠ 0 andthen prove that a = b = c.
Ans.
Given that: a + b + c ≠ 0 and
C1 → C1 + C2 + C3
⇒
⇒(Taking a + b + c common from C1)
⇒
R1 → R1 - R2 and R2 → R2 - R3
⇒
Expanding along C1
⇒
⇒ (b – c) (a – b) – (c – a)2 = 0
⇒ ab – b2 – ac + bc – c2 – a2 + 2ac = 0
⇒ – a2 – b2 – c2 + ab + bc + ac = 0
⇒ a2 + b2 + c2 – ab – bc – ac = 0
⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ac = 0
(Multiplying both sides by 2)
⇒ (a2 + b2 – 2ab) + (b2 + c2 – 2bc) + (a2 + c2 – 2ac) = 0
⇒ (a – b)2 + (b – c)2 + (a – c)2 = 0
It is only possible when (a – b)2 = (b – c)2 = (a – c)2 = 0
∴ a = b = c Hence, proved.
Q.22. Prove thatis divisible by a + b + c and find the quotient.
Ans.
Let
C1 → C1 + C2 + C3
⇒
Taking ab + bc + ac – a2 – b2 – c2 common from C1
R1 → R1 - R2 and R2 → R2 - R3
Expanding along C1
⇒ (a +b + c)2 (ab + bc + ac - a2 - b2 - c2 )
⇒ (a + b + c)2(ab + bc + ac - a2 - b2 - c2)[(c - b) (b - a)-(a- c)2]
⇒ (a + b + c)2 (ab + bc + ac - a2- b2- c2 )(bc - ca - b2+ ab - a2- c2 + 2ac)
⇒ (a + b + c)2 (ab + bc + ac - a2- b2- c2 )(ab + bc + ca - a2- b2- c2 )
⇒ (a + b + c)2 (ab + bc + ac - a2 - b2 - c2)2
⇒ (a + b + c) (a + b + c) (a2 + b2 + c2 - ab - bc - ac)2
Hence, the given determinant is divisible by a + b + c and the quotient is
(a + b + c) (a2 + b2 + c2 - ab - bc - ac)2
⇒ (a + b + c) (a2 + b2 + c2 - ab - bc - ac) (a2 + b2 + c2 - ab - bc - ac)
⇒ (a3 + b3 + c3 - 3abc) (a2 + b2 + c2 - ab - bc - ac)
⇒ (a3 + b3 + c3- 3abc) (2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac)
Q.23. If x + y + z = 0, prove that
Ans.
L.H.S.
Let
Expanding along R1
⇒ xa(yza2 – x2bc) – yb(y2ac – xzb2) + zc(xyc2 – z2ab)
⇒ xyza3 – x3abc – y3abc + xyzb3 + xyzc3 – z3abc
⇒ xyz(a3 + b3 + c3) – abc(x3 + y3 + z3)
⇒ xyz(a3 + b3 + c3) – abc(3xyz)
[(∵ x + y + z = 0) (∴ x3 + y3 + z3 = 3xyz)]
⇒ xyz(a3 + b3 + c3 – 3abc)
R1 → R1 + R2 + R3
(Taking a + b + c common from R1)
C1 → C1 - C2, C2 → C2 - C3
Expanding along R1
⇒ xyz(a + b+ c) [(c - a)2 - (b- c) (a - b)]
⇒ xyz(a + b + c)(c 2 + a2- 2ca - ab + b2+ ac - bc)
⇒ xyz(a + b+ c)( a2 + b2 + c2 - ab - bc - ca)
⇒ xyz(a3 + b3 + c3 - 3abc)
[a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)]
L.H.S. = R.H.S.
Hence, proved.