JEE Exam  >  JEE Notes  >  Mathematics (Maths) Class 12  >  NCERT Exemplar: Integrals

NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE PDF Download

Verify the following :
Q.1. NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
L.H.S. =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE[Dividing the numerator by the denominator]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE[where C1 = C – log 22]
L.H.S. = R.H.S.
Hence proved.

Q.2. NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
L.H.S. =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x2 + 3x = t
∴ (2x + 3) dx = dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
L.H.S. = R.H.S.
Hence verified.

Evaluate the following:
Q.3.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the required solution isNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.4. NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the required solution isNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.5. NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
Let NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x + sin x = t ⇒ (1 + cos x) dx = dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the required solution isNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.6.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the required solution isNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.7.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put tan x = t, ∴ sec2 x dx = dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the required solution isNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.8. NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
= x + C
Hence, the required solution is x + C.

Q.9.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the required solution isNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.10.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put √x = t  x = t2 ∵ dx = 2t . dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.11.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Let I = I1 + I2
NowNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
andNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put a2 – x2 = t ⇒ – 2x dx = dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Since I = I1 + I2
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE[C = C1 + C2]
Alternate method:
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x = a cos 2θ
∴ dx = a (– 2 sin 2θ) dθ =  – 2a sin 2θ dθ
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Now x = a cos 2θ
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.12. NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE(Hint : Put x = z4)
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x = t4 ⇒ dx = 4t3 dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

I = I1 – I2

Now
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put t3 + 1 = z ⇒ 3t2 dt = dz
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
∴ I = I1 – I2
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE[∵ C = C1 - C2]

Q.13.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.14.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.15.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE[Making perfect square]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.16.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

I = I1 – I2

NowNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x2 + 9 = t ⇒ 2x dx = dt
x dx = dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
∴ I = I1 – I2
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.17.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE(Making perfect square)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.18.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x2 = t ⇒ 2x dx = dt ⇒ x dx =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.19.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Put x2 = t for the purpose of partial fractions.

We getNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Resolving into partial fractions we put
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
[where A and B are arbitrary constants]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
⇒ t = A + At + B – Bt
Comparing the like terms, we get A – B = 1 and A + B = 0
Solving the above equations, we haveNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE(Putting t = x2)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.20.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.21.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x = sin θ ⇒ dx  = cos θ dθ
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.22.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
[∵ 2 cos A cos B = cos (A + B) + cos (A - B)]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.23.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
= tan x – cot x – 3x + C
Hence, I = tan x – cot x – 3x + C.

Q.24.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.25.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
= x + 2 sin x + C
Hence, I = x + 2 sin x + C.

Q.26.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE(Hint : Put x2 = sec θ)
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x2 = sec θ
∴ 2x dx = sec θ tan θ dθ
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
SoNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Evaluate the following as limit of sums:
Q.27.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Using the formula,
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
where h =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Here, a  = 0 and b = 2
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Here, f(x) = x2 + 3
f(0) = 0 + 3 = 3
f(0 + h) = (0 + h)2 + 3 = h2 + 3
f(0 + 2h) = (0 + 2h)2 + 3 = 4h2 + 3

..............................

..............................
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Now
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.28.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Here, a  = 0 and b = 2NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Here f(x) = ex 
f(0) = e0 = 1
f(0 + h) = e0 + h = eh 
f(0 + 2h) = e0 + 2h = e2h 
................................

................................
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, I = e–1.

Evaluate the following:
Q.29.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put ex = t ⇒ ex dx = dt
Changing the limit, we have
When x  = 0 ∴ t = e0 = 1
When x  = 1 ∴ t = e1 = e
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.30.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put sin2 x = t
2 sin x cos x dx = dt
sin x cos x dx =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Changing the limits we get,
When x  = 0 ∴ t = sin2 0 = 0;  When x =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.31.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE[Making perfect square]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE = sin– 1 (4 – 3) – sin– 1 (2 – 3)
= sin– 1 (1) – sin– 1 (– 1) = sin– 1 (1) + sin– 1 (1)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, I = π.

Q.32.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put 1 + x2 = t ⇒ 2x dx = dt ⇒ x dx =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Changing the limits, we have
When x  = 0 ∴ t = 1
When x  = 1 ∴ t = 2
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, I = √2 -1 .

Q.33.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(i)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(ii)
Adding (i) and (ii) we get,
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put cos x = t ⇒ – sin x dx = dt ⇒ sin x dx = – dt
Changing the limits, we have
When x  = 0, t = cos 0 = 1; When x = p, t = cos p = – 1
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.34.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE(Hint: let x = sinθ)
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x = sin θ
∴ dx = cos θ dθ
Changing the limits, we get
When x  = 0 ∴ sin θ = 0 ∴ θ = 0
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Now, dividing the numerator and denominator by cos2 θ, we get
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put tan θ = t
∴ sec2 θ dθ = dt
Changing the limits, we get
When θ = 0 ∴ t = tan 0 = 0
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Long Answer (L.A.)
Q.35. NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Put x2 = t for the purpose of partial fraction.

We getNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
[where A and B are arbitrary constants]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

⇒ t = At + 3A + Bt – 4B
Comparing the like terms, we get
A + B = 1 and 3A – 4B = 0
⇒ 3A = 4B
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NowNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
So,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.36.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Put x2 = t for the purpose of partial fraction.

We getNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
⇒ t = At + Ab2 + Bt + Ba2
Comparing the like terms, we get
A + B = 1 and Ab2 + Ba2 = 0
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
SoNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.37.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(i)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(ii)
Adding (i) and (ii), we get
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
2I = π [0 - (- 1 - 1)] = π(2)
∴ I = π
Hence, I = π.

Q.38.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Resolving into partial fraction, we put
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
 2x – 1 = A(x + 2)(x – 3) + B(x – 1)(x – 3) + C(x – 1)(x + 2)
put x  = 1, 1 = A(3)(– 2)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
put x  = – 2, – 5 = B(– 3)(– 5)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
put x  = 3, 5 = C(2)(5)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.39.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put tan– 1x = tNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Here f(t) = tan t
∴ f ′(t) = sec2 t
= et . f(t) = et tan t = - + e tan-1 x .x + C
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
Hence, I = - + e tan-1 x .x + C.

Q.40.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE(Hint: Put x = a tan2θ)
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put x = a tan2 θ
dx = 2a tan θ . sec2 θ . dθ
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.41.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Changing the limits, we have
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.42.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Now, put
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.43.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE(Hint: Put tanx = t2)
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put tan x = t2
sec2 x dx = 2t dtNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
[Dividing the numerator and denominator by t2]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
∴ I = I1 + I2 ...(i)
NowNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NowNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
So I = I1 + I2
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.44.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Dividing the numerator and denominator by cos4 x, we have
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put tan x = t ⇒ sec2 x dx = dt
Changing the limits, we get
When x  = 0, t = tan 0 = 0
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put t 2 = u only for the purpose of partial fraction
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Comparing the coefficients of like terms, we get
a2A + B = 1 and b2A = 1
NowNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.45.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.46.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEElog sin (π - x) dx
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(ii)
Adding (i) and (ii), we get
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(iii)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(iv)
On adding (iii) and (iv), we get
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put 2x = t ⇒ 2 dx = dtNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEdx [Changing the limit]
2I = I -π . log 2 [ x]0π/2 [from eqn. (iii)]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
SoNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.47.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE ...(i)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(ii)
Adding (i) and (ii), we get
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEcos 2x dx
Put 2x = tNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Changing the limits we get
When x = 0 ∴ t = 0; When x =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(iii)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE...(iv)

On adding (iii) and (iv), we get,

NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put 2t = u ⇒ 2 dt = duNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE[From eq. (ii)]
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Objective Type Questions
Q.48.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to 
(a) 2(sinx + xcosθ) + C 
(b) 2(sinx – xcosθ) + C 
(c) 2(sinx + 2xcosθ) + C 
(d) 2(sinx – 2x cosθ) + C
Ans. (a)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
 NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

∴ I = 2(sin x +cos θ .x)+ C.

Hence, correct option is (a).

Q.49.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to 
(a) sin (b – a) logNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
 (b) cosec (b – a) logNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(c) cosec (b – a) logNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
 (d) sin (b – a) logNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans. (c)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
Multiplying and dividing by sin (b – a) we get,
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (c).

Q.50.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE is equal to 
(a) (x + 1) tan –1 √x – √x + C 
(b) x tan –1 √x – √x + C 
(c) √x – x tan –1 √x + C 
(d) √x – ( x + 1) tan –1 √x + C
Ans. (a)
Solution.

 Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
Put √x = tan θ ⇒  x = tan2 θ ⇒ dx = 2 tan θ sec2 θ dθ
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Let us take
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put tan θ = t ⇒ sec2 θ dθ = dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

∴ I = tan - 1 √x .x - √x+ tan-1 √x + C =

( x + 1) tan - 1 √x -√x+ C
Hence, the correct option is (a).

Q.51.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to
(a)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans. (a)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Here f(x) =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
UsingNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (a).

Q.52.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to
(a)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans. (d)
Solution.

LetNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (d).

Q.53. IfNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEthen
(a)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans. (c)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
1 = A(x2 + 1) + (x + 2) (Bx + C)
1 = Ax2 + A + Bx2 + Cx + 2Bx + 2C
1 = (A + B)x2 + (C + 2B)x + (A + 2C)
Comparing the like terms, we have
A + B = 0 ...(i)
2B + C = 0 ...(ii)
A + 2C = 1 ...(iii)
Subtracting (i) from (iii) we get      
2C  B = 1 ∴ B = 2C – 1

Putting the value of B in eqn. (ii) we have
2(2C – 1) + C = 0 ⇒ 4C – 2 + C = 0

5C = 2NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Putting the given value of I
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (c).

Q.54.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to
(a)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans. (d)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (d).

Q.55.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to 
(a) log 1 + cos x + C 
(b) log x + sin x + C
(c)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans. (d)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (d).

Q.56. IfNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEthen
(a)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Ans. (d)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put 1 + x2 = t ⇒ 2x dx = dt ⇒ x dx =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
But I = a(1 + x2 )3/2 +NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (d).

Q.57.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to 
(a) 1 
(b) 2 
(c) 3 
(d) 4
Ans. (a)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (a).

Q.58.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to
(a) 2√2 
(b) 2( √2 + 1) 
(c) 2 
(d) 2( √2 - 1)
Ans. (d)
Solution.

Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, the correct option is (d).

Q.59.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEis equal to _______.
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE 
Put sin x = t ⇒ cos x dx = dt
When x  = 0 then t = sin 0 = 0;  When x =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence, I = e – 1.

Q.60.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE= ________.

Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
PutNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Let f(x) =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
UsingNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Fill in the blanks
Q.61. IfNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEthen a = ________.
Ans.
Given that:NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.62.NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE= ________.
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Put cos x = t
∴ – sin x dx = dt ⇒ sin x dx = – dt
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

Q.63. The value ofNCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEEsin3x cos2x dx is _______.
Ans.
Let I =NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE
Let f(x) = sin3 x cos2 x f(– x)
= sin3(– x).cos2 (– x) = – sin3 x cos2 x = – f(x)
NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

The document NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE is a part of the JEE Course Mathematics (Maths) Class 12.
All you need of JEE at this link: JEE
204 videos|290 docs|139 tests

Top Courses for JEE

FAQs on NCERT Exemplar: Integrals - Mathematics (Maths) Class 12 - JEE

1. What is the concept of integration?
Ans. Integration is a mathematical operation that involves finding the antiderivative of a function. It is the reverse process of differentiation and is used to calculate the area under a curve, the accumulation of quantities over time, and various other applications in mathematics and science.
2. How can integrals be used to find the area under a curve?
Ans. Integrals can be used to find the area under a curve by evaluating the definite integral of the function over a specific interval. The integral represents the area between the curve and the x-axis within that interval. By evaluating this integral, we can determine the exact value of the area.
3. What are the different methods of integration?
Ans. There are several methods of integration, including: - Integration by substitution: This method involves substituting a variable to simplify the integral. - Integration by parts: This method is based on the product rule of differentiation and involves splitting the integral into two parts. - Partial fraction decomposition: This method is used to integrate rational functions by decomposing them into simpler fractions. - Trigonometric substitution: This method involves substituting trigonometric functions to simplify the integral.
4. How can integrals be applied in physics and engineering?
Ans. Integrals have numerous applications in physics and engineering. They can be used to calculate the work done by a force, the displacement of an object, or the velocity and acceleration of a particle. In engineering, integrals are commonly used for determining the area, volume, and moment of inertia of objects, as well as for solving differential equations that model physical systems.
5. What is the fundamental theorem of calculus?
Ans. The fundamental theorem of calculus states that if a function is continuous over a closed interval and has an antiderivative, then the definite integral of the function over that interval can be evaluated by subtracting the antiderivative at the upper limit from the antiderivative at the lower limit. In other words, it relates differentiation and integration, providing a powerful tool for evaluating integrals.
204 videos|290 docs|139 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

,

video lectures

,

Extra Questions

,

shortcuts and tricks

,

past year papers

,

NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

,

Important questions

,

Sample Paper

,

Exam

,

Semester Notes

,

practice quizzes

,

Summary

,

Objective type Questions

,

MCQs

,

study material

,

NCERT Exemplar: Integrals | Mathematics (Maths) Class 12 - JEE

,

Viva Questions

,

Free

,

ppt

,

Previous Year Questions with Solutions

,

mock tests for examination

;