Class 10 Exam  >  Class 10 Notes  >  Extra Documents, Videos & Tests for Class 10  >  NCERT Solutions - Chapter 8: Introduction to Trigonometry, Class 10, Maths

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Excercise 8.1

1. In Δ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine :
 (i) sin A, cos A
 (ii) sin C, cos C

 

Answer
NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry
In Δ ABC,∠B = 90º
By Applying Pythagoras theorem , we get

AC2 = AB2 + BC= (24)2 + 72 = (576+49) cm2 = 625 cm2
⇒ AC = 25

(i) sin A = BC/AC = 7/25    cos A = AB/AC = 24/25
(ii) sin C = AB/AC = 24/25
     cos C = BC/AC = 7/25

2.  In Fig. find tan P – cot R.

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

By Applying Pythagoras theorem in ΔPQR , we get

PR2 = PQ2 + QR2 = (13)2 = (12)2 + QR= 169 = 144  + QR2
⇒  QR2 = 25 ⇒  QR = 5 cm

Now,
tan P = QR/PQ = 5/12
cot R = QR/PQ = 5/12
A/q
tan P – cot R = 5/12 - 5/12 = 0

3. If sin A =3/4, calculate cos A and tan A.

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Let ΔABC be a right-angled triangle, right-angled at B.

We know that sin A = BC/AC = 3/4

Let BC be 3k and AC will be 4k where k is a positive real number.

By Pythagoras theorem we get,
AC2 = AB2 + BC
(4k)2 = AB2 + (3k)2
16k2 - 9k2 = AB2
AB= 7k2
AB = √7 k

cos A = AB/AC = √7 k/4k = √7/4

tan A = BC/AB = 3k/√7 k = 3/√7

4. Given 15 cot A = 8, find sin A and sec A.

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Let ΔABC be a right-angled triangle, right-angled at B.

We know that cot A = AB/BC = 8/15   (Given)
Let AB be 8k and BC will be 15k where k is a positive real number.

By Pythagoras theorem we get,
AC2 = AB2 + BC
AC2 = (8k)2 + (15k)2
AC2 = 64k2 + 225k2
AC2 = 289k2
AC = 17 k

sin A = BC/AC = 15k/17k = 15/17

sec A = AC/AB = 17k/8 k = 17/8

5. Given sec θ = 13/12, calculate all other trigonometric ratios.

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Let ΔABC be a right-angled triangle, right-angled at B.

We know that sec θ = OP/OM = 13/12   (Given)
Let OP be 13k and OM will be 12k where k is a positive real number. 

By Pythagoras theorem we get,
OP2 = OM2 + MP
(13k)2 = (12k)+ MP
169k2 - 144k2 = MP2
MP2 = 25k2

MP = 5

Now,

sin θ = MP/OP = 5k/13k = 5/13

cos θ = OM/OP = 12k/13k = 12/13

tan θ = MP/OM = 5k/12k = 5/12

cot θ = OM/MP = 12k/5k = 12/5

cosec θ = OP/MP = 13k/5k = 13/5

6.  If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry
Let ΔABC in which CD ⊥ AB.

A/q,

cos A = cos B

⇒ AD/AC = BD/BC

⇒ AD/BD = AC/BC

Let AD/BD = AC/BC = k

⇒ AD = kBD  .... (i)

⇒ AC = kBC  .... (ii)

By applying Pythagoras theorem in ΔCAD and ΔCBD we get,

CD2 = AC2 - AD2 …. (iii)
and also CD2 = BC2 - BD2 …. (iv)
From equations (iii) and (iv) we get,
AC2 - AD2 = BC2 - BD2
⇒ (kBC)2 - (k BD)2 = BC2 - BD2
⇒ k2 (BC2 - BD2) = BC2 - BD2
⇒ k2 = 1
⇒ k = 1
Putting this value in equation (ii), we obtain
AC = BC
⇒ ∠A = ∠B  (Angles opposite to equal sides of a triangle are equal-isosceles triangle)

7. If cot θ =7/8, evaluate : 

(i)(1+sin θ )(1-sin θ)/(1+cos θ)(1-cos θ)

(ii) cot2θ

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Let ΔABC in which ∠B = 90º and ∠C = θ

A/q,

cot θ = BC/AB = 7/8

Let BC = 7k and AB = 8k, where k is a positive real number.
By Pythagoras theorem in ΔABC we get.
AC2 = AB2 + BC
AC2 = (8k)2 + (7k)2
AC2 = 64k2 + 49k2
AC2 = 113k2
AC = √113 k

sin θ = AB/AC = 8k/√113 k = 8/√113 

and cos θ = BC/AC = 7k/√113 k = 7/√113 

(i) (1+sin θ )(1-sin θ)/(1+cos θ)(1-cos θ) = (1-sin2θ)/(1-cos2θ)
= {1 - (8/√113)2}/{1 - (7/√113)2}
= {1 - (64/113)}/{1 - (49/113)} = {(113 - 64)/113}/{(113 - 49)/113} = 49/64

(ii) cot2θ = (7/8)2 = 49/64

8.  If 3cot A = 4/3 , check whether (1-tan2A)/(1+tan2A) = cos2A – sin2A or not.

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Let ΔABC in which ∠B = 90º,
A/q,
cot A = AB/BC = 4/3

Let AB = 4k and BC = 3k, where k is a positive real number.
By Pythagoras theorem in ΔABC we get.
AC2 = AB2 + BC
AC2 = (4k)2 + (3k)2
AC2 = 16k2 + 9k2
AC2 = 25k2
AC = 5k
tan A = BC/AB = 3/4
sin A = BC/AC = 3/5
cos A = AB/AC = 4/5
L.H.S. = (1-tan2A)/(1+tan2A) = 1- (3/4)2/1+ (3/4)= (1- 9/16)/(1+ 9/16) = (16-9)/(16+9) = 7/25
R.H.S. = cos2A – sin2A = (4/5)- (3/4)2 = (16/25) - (9/25) = 7/25
R.H.S. = L.H.S.
Hence,  (1-tan2A)/(1+tan2A) = cos2A – sin2A

9. In triangle ABC, right-angled at B, if tan A =1/√3 find the value of:
 (i) sin A cos C + cos A sin C
 (ii) cos A cos C – sin A sin C


Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Let ΔABC in which ∠B = 90º,
A/q,

tan A = BC/AB = 1/√3
Let AB = √3 k and BC = k, where k is a positive real number.
By Pythagoras theorem in ΔABC we get

AC2 = AB2 + BC
AC2 = (√3 k)2 + (k)2
AC2 = 3k2 + k2
AC2 = 4k2
AC = 2k
sin A = BC/AC = 1/2
cos A = AB/AC = √3/2 ,
sin C = AB/AC = √3/2 
cos A = BC/AC = 1/2
(i) sin A cos C + cos A sin C = (1/2×1/2) + (√3/2×√3/2) = 1/4+3/4 = 4/4 = 1
(ii) cos A cos C – sin A sin C = (√3/2×1/2) - (1/2×√3/2) = √3/4 - √3/4 = 0

10. In Δ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry
Given that, PR + QR = 25 , PQ = 5
Let PR be x.  ∴ QR = 25 - x

By Pythagoras theorem ,
PR2 = PQ2 + QR2
x2 = (5)2 + (25 - x)2
x2 = 25 + 625 + x2 - 50x
50x = 650
x = 13
∴ PR = 13 cm
QR = (25 - 13) cm = 12 cm

sin P = QR/PR = 12/13

cos P = PQ/PR = 5/13

tan P = QR/PQ = 12/5

11.  State whether the following are true or false. Justify your answer.
 (i) The value of tan A is always less than 1.
 (ii) sec A = 12/5 for some value of angle A.
 (iii) cos A is the abbreviation used for the cosecant of angle A.
 (iv) cot A is the product of cot and A.
 (v) sin θ = 4/3 for some angle θ.

Answer

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

(i) False.

In ΔABC in which ∠B = 90º,

 AB = 3, BC = 4 and AC = 5

Value of tan A = 4/3 which is greater than.

The triangle can be formed with sides equal to 3, 4 and hypotenuse = 5 as

it will follow the Pythagoras theorem.

AC2 = AB2 + BC
52 = 32 + 42
25 = 9 + 16
25 = 25

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

ii) True.
Let a ΔABC in which ∠B = 90º,AC be 12k and AB be 5k, where k is a positive real number.

By Pythagoras theorem we get,
AC2 = AB2 + BC
(12k)2 = (5k)2 + BC
BC+ 25k= 144k2
BC= 119k2

Such a triangle is possible as it will follow the Pythagoras theorem.

(iii) False.

Abbreviation used for cosecant of angle A is cosec A.cos A is the abbreviation used for cosine of angle A.

(iv) False.

cot A is not the product of cot and A. It is the cotangent of ∠A.

(v) False.

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

sin θ = Height/Hypotenuse

We know that in a right angled triangle, Hypotenuse is the longest side. 

∴ sin θ will always less than 1 and it can never be 4/3 for any value of θ.

Excercise 8.2

1. Evaluate the following :
 (i) sin 60° cos 30° + sin 30° cos 60° (ii) 2 tan245° + cos230° – sin260°
 (iii) cos 45°/(sec 30° + cosec 30°)    (iv) (sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)
 (v) (5cos260° + 4sec230° - tan245°)/(sin230° + cos230°)

Answer

(i) sin 60° cos 30° + sin 30° cos 60°
     =  (√3/2×√3/2) + (1/2×1/2) = 3/4 + 1/4 = 4/4 = 1

(ii) 2 tan245° + cos230° – sin260°
     = 2×(1)+ (√3/2)2 - (√3/2)= 2

(iii) cos 45°/(sec 30° + cosec 30°)
     = 1/√2/(2/√3 + 2) = 1/√2/{(2+2√3)/√3)
     = √3/√2×(2+2√3) = √3/(2√2+2√6)
     = √3(2√6-2√2)/(2√6+2√2)(2√6-2√2)
     = 2√3(√6-√2)/(2√6)2-(2√2)2
       =  2√3(√6-√2)/(24-8) =  2√3(√6-√2)/16
     = √3(√6-√2)/8 = (√18-√6)/8 = (3√2-√6)/8

(iv) (sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)
      = (1/2+1-2/√3)/(2/√3+1/2+1)
      = (3/2-2/√3)/(3/2+2/√3)
      = (3√3-4/2√3)/(3√3+4/2√3)
      = (3√3-4)/(3√3+4)
      = (3√3-4)(3√3-4)/(3√3+4)(3√3-4)
      = (3√3-4)2/(3√3)2-(4)2
        = (27+16-24√3)/(27-16)
      = (43-24√3)/11]

(v) (5cos260° + 4sec230° - tan245°)/(sin230° + cos230°)
     = 5(1/2)2+4(2/√3)2-12/(1/2)2+(√3/2)2
      = (5/4+16/3-1)/(1/4+3/4)
    = (15+64-12)/12/(4/4)
    = 67/12

2. Choose the correct option and justify your choice :
 (i) 2tan 30°/1+tan230° =
      (A) sin 60°            (B) cos 60°          (C) tan 60°            (D) sin 30°
 (ii) 1-tan245°/1+tan245° =
      (A) tan 90°            (B) 1                    (C) sin 45°            (D) 0
 (iii)  sin 2A = 2 sin A is true when A =
      (A) 0°                   (B) 30°                  (C) 45°                 (D) 60°
 (iv) 2tan30°/1-tan230° =
      (A) cos 60°          (B) sin 60°             (C) tan 60°           (D) sin 30°


Answer

(i) (A) is correct.
2tan 30°/1+tan230° = 2(1/√3)/1+(1/√3)2
= (2/√3)/(1+1/3) = (2/√3)/(4/3)

= 6/4√3 = √3/2 = sin 60°

(ii)  (D) is correct.

1-tan245°/1+tan245° = (1-12)/(1+12)

= 0/2 = 0

(iii) (A) is correct.

sin 2A = 2 sin A is true when A =

= As sin 2A = sin 0° = 0
2 sin A = 2sin 0° = 2×0 = 0

or,

sin 2A = 2sin A cos A

⇒2sin A cos A = 2 sin A

⇒ 2cos A = 2 ⇒ cos A = 1

⇒ A = 0°

(iv) (C) is correct.

2tan30°/1-tan230° =  2(1/√3)/1-(1/√3)2

= (2/√3)/(1-1/3) = (2/√3)/(2/3) = √3 = tan 60°

3. If tan (A + B) = √3 and tan (A – B) = 1/√3; 0° < A + B ≤ 90°; A > B, find A and B.

Answer

tan (A + B) = √3

⇒ tan (A + B) = tan 60°

⇒ (A + B) = 60° ... (i)

 tan (A – B) = 1/√3

⇒ tan (A - B) = tan 30°
⇒ (A - B) = 30° ... (ii)

Adding (i) and (ii), we get

A + B + A - B = 60° + 30°

2A = 90°

A= 45°

Putting the value of A in equation (i)

45° + B = 60°

⇒ B = 60° - 45°

⇒ B = 15°

Thus, A = 45° and B = 15°


4. State whether the following are true or false. Justify your answer.
 (i) sin (A + B) = sin A + sin B.
 (ii) The value of sin θ increases as θ increases.
 (iii) The value of cos θ increases as θ increases.
 (iv) sin θ = cos θ for all values of θ.
 (v) cot A is not defined for A = 0°.

 Answer

(i) False.
Let A = 30° and B = 60°, then
sin (A + B) = sin (30° + 60°) = sin 90° = 1 and,
sin A + sin B = sin 30° + sin 60°
= 1/2 + √3/2 = 1+√3/2

(ii) True.
sin 0° = 0
sin 30° = 1/2
sin 45° = 1/√2
sin 60° = √3/2
sin  90° = 1
Thus the value of sin θ increases as θ increases.

(iii) False.
cos 0° = 1
cos 30° = √3/2
cos 45° = 1/√2
cos 60° = 1/2
cos 90° = 0
Thus the value of cos θ decreases as θ increases.

(iv) True.
cot A = cos A/sin A
cot 0° = cos 0°/sin 0° = 1/0 = undefined.

Excercise 8.3

1. Evaluate :
 (i) sin 18°/cos 72°        
 (ii) tan 26°/cot 64°        
 (iii)  cos 48° – sin 42°      
 (iv)  cosec 31° – sec 59°

Answer

(i) sin 18°/cos 72°
    = sin (90° - 18°) /cos 72° 
    = cos 72° /cos 72° = 1

(ii) tan 26°/cot 64°
    = tan (90° - 36°)/cot 64°
    = cot 64°/cot 64° = 1

(iii) cos 48° - sin 42°
      = cos (90° - 42°) - sin 42°
      = sin 42° - sin 42° = 0

(iv) cosec 31° - sec 59°
     = cosec (90° - 59°) - sec 59°
     = sec 59° - sec 59° = 0

  2.  Show that :
 (i) tan 48° tan 23° tan 42° tan 67° = 1
 (ii) cos 38° cos 52° – sin 38° sin 52° = 0

Answer

(i) tan 48° tan 23° tan 42° tan 67°
    = tan (90° - 42°) tan (90° - 67°) tan 42° tan 67°
    = cot 42° cot 67° tan 42° tan 67°
    = (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1

(ii) cos 38° cos 52° - sin 38° sin 52°
    = cos (90° - 52°) cos (90°-38°) - sin 38° sin 52°
    = sin 52° sin 38° - sin 38° sin 52° = 0

 3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.

Answer 

A/q,
tan 2A = cot (A- 18°)
⇒ cot (90° - 2A) = cot (A -18°)
Equating angles,
⇒ 90° - 2A = A- 18° ⇒ 108° = 3A
⇒ A = 36°

4.  If tan A = cot B, prove that A + B = 90°.

Answer

A/q, 
tan A = cot B
⇒ tan A = tan (90° - B)
⇒ A = 90° - B
⇒ A + B = 90°

5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.

Answer

A/q,
sec 4A = cosec (A - 20°)
⇒ cosec (90° - 4A) = cosec (A - 20°)
Equating angles,
90° - 4A= A- 20°
⇒ 110° = 5A
⇒ A = 22°

 6. If A, B and C are interior angles of a triangle ABC, then show that sin (B+C/2) = cos A/2

Answer

In a triangle, sum of all the interior angles
A + B + C = 180°
⇒ B + C = 180° - A
⇒ (B+C)/2 = (180°-A)/2
⇒ (B+C)/2 = (90°-A/2)
⇒ sin (B+C)/2 = sin (90°-A/2)
⇒ sin (B+C)/2 = cos A/2

7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

Answer

sin 67° + cos 75°
= sin (90° - 23°) + cos (90° - 15°)
= cos 23° + sin 15°

Excercise 8.4

 1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Answer

cosec2A - cot2A = 1
⇒ cosec2A = 1 + cot2A
⇒ 1/sin2A = 1 + cot2A
⇒sin2A = 1/(1+cot2A)

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Now,
sin2A = 1/(1+cot2A)
⇒ 1 - cos2A = 1/(1+cot2A)
⇒cos2A = 1 - 1/(1+cot2A)
⇒cos2A = (1-1+cot2A)/(1+cot2A)
⇒ 1/sec2A = cot2A/(1+cot2A)
⇒ secA = (1+cot2A)/cot2A

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

also,
tan A = sin A/cos A and cot A = cos A/sin A
⇒ tan A = 1/cot A
 

2. Write all the other trigonometric ratios of ∠A in terms of sec A.
Answer
We know that,
sec A = 1/cos A
⇒ cos A = 1/sec A
also,
cos2A + sin2A = 1
⇒  sin2A = 1 - cos2A
⇒  sin2A = 1 - (1/sec2A)
⇒  sin2A = (sec2A-1)/sec2A

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

also,
sin A = 1/cosec A
⇒cosec A = 1/sin A

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

Now,
sec2A - tan2A = 1
⇒ tan2A = sec2A + 1

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

also,
tan A = 1/cot A
⇒ cot A = 1/tan A

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry


3. Evaluate :
 (i) (sin263° + sin227°)/(cos217° + cos273°)
 (ii)  sin 25° cos 65° + cos 25° sin 65°


Answer

(i) (sin263° + sin227°)/(cos217° + cos273°)
   = [sin2(90°-27°) + sin227°]/[cos2(90°-73°) + cos273°)]
   = (cos227° + sin227°)/(sin227° + cos273°)
   = 1/1 =1                       (∵ sin2A + cos2A = 1)

(ii) sin 25° cos 65° + cos 25° sin 65°
   = sin(90°-25°) cos 65° + cos(90°-65°) sin 65°
   = cos 65° cos 65° + sin 65° sin 65°
   = cos265° + sin265° = 1

4. Choose the correct option. Justify your choice.
 (i) 9 sec2A - 9 tan2A =
       (A) 1                 (B) 9              (C) 8                (D) 0
 (ii) (1 + tan θ + sec θ) (1 + cot θ - cosec θ)
       (A) 0                 (B) 1              (C) 2                (D) - 1
 (iii) (secA + tanA) (1 - sinA) =
       (A) secA           (B) sinA        (C) cosecA      (D) cosA

(iv) 1+tan2A/1+cot2A = 

      (A) sec2A                 (B) -1              (C) cot2A                (D) tan2A 

Answer

(i) (B) is correct.

9 sec2A - 9 tan2A
= 9 (sec2A - tan2A)
= 9×1 = 9   (∵ sec2 A - tan2 A = 1)

(ii) (C) is correct

(1 + tan θ + sec θ) (1 + cot θ - cosec θ)   

= (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ - 1/sin θ)

= (cos θ+sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ

= (cos θ+sin θ)2-12/(cos θ sin θ)

= (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ)

= (1+ 2cos θ sin θ -1)/(cos θ sin θ)

= (2cos θ sin θ)/(cos θ sin θ) = 2


(iii) (D) is correct.

(secA + tanA) (1 - sinA)

= (1/cos A + sin A/cos A) (1 - sinA)

= (1+sin A/cos A) (1 - sinA)

= (1 - sin2A)/cos A

= cos2A/cos A = cos A

(iv) (D) is correct.

1+tan2A/1+cot2

= (1+1/cot2A)/1+cot2A

= (cot2A+1/cot2A)×(1/1+cot2A)

= 1/cot2A = tan2A

5. Prove the following identities, where the angles involved are acute angles for which the
 expressions are defined.

(i) (cosec θ - cot θ)= (1-cos θ)/(1+cos θ)

(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A

(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ

     [Hint : Write the expression in terms of sin θ and cos θ]

(iv) (1 + sec A)/sec A = sin2A/(1-cos A)  

     [Hint : Simplify LHS and RHS separately]

(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec2A = 1+cot2A.

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

(vii) (sin θ - 2sin3θ)/(2cos3θ-cos θ) = tan θ
 (viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A
 (ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
      [Hint : Simplify LHS and RHS separately]
 (x) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A

Answer
(i) (cosec θ - cot θ)= (1-cos θ)/(1+cos θ)
L.H.S. =  (cosec θ - cot θ)2
           = (cosec2θ + cot2θ - 2cosec θ cot θ)
           = (1/sin2θ + cos2θ/sin2θ - 2cos θ/sin2θ)
           = (1 + cos2θ - 2cos θ)/(1 - cos2θ)
           = (1-cos θ)2/(1 - cosθ)(1+cos θ)
           = (1-cos θ)/(1+cos θ) = R.H.S.

(ii)  cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
 L.H.S. = cos A/(1+sin A) + (1+sin A)/cos A
            = [cos2A + (1+sin A)2]/(1+sin A)cos A
            = (cos2A + sin2A + 1 + 2sin A)/(1+sin A)cos A
            = (1 + 1 + 2sin A)/(1+sin A)cos A
            = (2+ 2sin A)/(1+sin A)cos A
            = 2(1+sin A)/(1+sin A)cos A
            = 2/cos A = 2 sec A = R.H.S.

(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
L.H.S. = tan θ/(1-cot θ) + cot θ/(1-tan θ)
           = [(sin θ/cos θ)/1-(cos θ/sin θ)] + [(cos θ/sin θ)/1-(sin θ/cos θ)]
           = [(sin θ/cos θ)/(sin θ-cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ-sin θ)/cos θ]
           = sin2θ/[cos θ(sin θ-cos θ)] + cos2θ/[sin θ(cos θ-sin θ)]
           = sin2θ/[cos θ(sin θ-cos θ)] - cos2θ/[sin θ(sin θ-cos θ)]
           = 1/(sin θ-cos θ) [(sin2θ/cos θ) - (cos2θ/sin θ)]
           = 1/(sin θ-cos θ) × [(sin3θ - cos3θ)/sin θ cos θ]
           = [(sin θ-cos θ)(sin2θ+cos2θ+sin θ cos θ)]/[(sin θ-cos θ)sin θ cos θ]
           = (1 + sin θ cos θ)/sin θ cos θ
           = 1/sin θ cos θ + 1
           = 1 + sec θ cosec θ = R.H.S.

(iv)  (1 + sec A)/sec A = sin2A/(1-cos A)
L.H.S. = (1 + sec A)/sec A
           = (1 + 1/cos A)/1/cos A
           = (cos A + 1)/cos A/1/cos A
           = cos A + 1
R.H.S. = sin2A/(1-cos A)
            = (1 - cos2A)/(1-cos A)
            = (1-cos A)(1+cos A)/(1-cos A)
            = cos A + 1
L.H.S. = R.H.S.

(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec2A = 1+cot2A.
L.H.S. = (cos A–sin A+1)/(cos A+sin A–1)
           Dividing Numerator and Denominator by sin A,
           = (cos A–sin A+1)/sin A/(cos A+sin A–1)/sin A
           = (cot A - 1 + cosec A)/(cot A+ 1 – cosec A)
           = (cot A - cosec2A + cot2A + cosec A)/(cot A+ 1 – cosec A) (using cosec2A - cot2A = 1)
           = [(cot A + cosec A) - (cosec2A - cot2A)]/(cot A+ 1 – cosec A)
           = [(cot A + cosec A) - (cosec A + cot A)(cosec A - cot A)]/(1 – cosec A + cot A)
           =  (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
           =  cot A + cosec A = R.H.S.
NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

(vii) (sin θ - 2sin3θ)/(2cos3θ-cos θ) = tan θ
L.H.S. = (sin θ - 2sin3θ)/(2cos3θ - cos θ)
           = [sin θ(1 - 2sin2θ)]/[cos θ(2cos2θ- 1)]
           = sin θ[1 - 2(1-cos2θ)]/[cos θ(2cos2θ -1)]
          = [sin θ(2cos2θ -1)]/[cos θ(2cos2θ -1)]
          = tan θ = R.H.S.

(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A
L.H.S. = (sin A + cosec A)+ (cos A + sec A)2
               = (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)
           = (sin2A + cos2A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan2A + 1 + cot2A
           = 1 + 2 + 2 + 2 + tan2A + cot2A
           = 7+tan2A+cot2A = R.H.S.

(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
L.H.S. = (cosec A – sin A)(sec A – cos A)
           = (1/sin A - sin A)(1/cos A - cos A)
           = [(1-sin2A)/sin A][(1-cos2A)/cos A]
           = (cos2A/sin A)×(sin2A/cos A)
           = cos A sin A
R.H.S. = 1/(tan A+cotA)
            = 1/(sin A/cos A +cos A/sin A)
            = 1/[(sin2A+cos2A)/sin A cos A]
            = cos A sin A
L.H.S. = R.H.S.

(x)  (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A
L.H.S. = (1+tan2A/1+cot2A)
           = (1+tan2A/1+1/tan2A)
           = 1+tan2A/[(1+tan2A)/tan2A]
           = tan2A

The document NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry is a part of the Class 10 Course Extra Documents, Videos & Tests for Class 10.
All you need of Class 10 at this link: Class 10
5 videos|292 docs|59 tests

Top Courses for Class 10

FAQs on NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

1. What is trigonometry?
Ans. Trigonometry is a branch of mathematics that deals with the relationships between the angles and sides of triangles. It involves the study of ratios and functions, such as sine, cosine, and tangent, which are used to solve various problems related to triangles and their applications in real-world scenarios.
2. How is trigonometry useful in real life?
Ans. Trigonometry has numerous real-life applications. It is used in fields such as engineering, architecture, physics, and navigation. For example, in architecture, trigonometry helps in calculating the angles and dimensions of buildings. In physics, it is used to study waveforms and oscillations. In navigation, trigonometry helps in determining distances and directions using celestial bodies.
3. What are the basic trigonometric ratios?
Ans. The basic trigonometric ratios are sine, cosine, and tangent. These ratios are defined based on the sides of a right-angled triangle. Sine (sin) is the ratio of the length of the side opposite to an angle to the hypotenuse. Cosine (cos) is the ratio of the length of the adjacent side to the hypotenuse. Tangent (tan) is the ratio of the length of the opposite side to the adjacent side.
4. How do we find the values of trigonometric ratios?
Ans. The values of trigonometric ratios can be found using a calculator or trigonometric tables. However, for certain special angles (0°, 30°, 45°, 60°, 90°), the values of trigonometric ratios are known and can be directly used. These values are derived from the ratios of sides in a right-angled triangle.
5. Can trigonometry be applied to non-right-angled triangles?
Ans. Yes, trigonometry can be applied to non-right-angled triangles as well. In such cases, the Law of Sines and the Law of Cosines are used to find the unknown angles and sides of the triangle. The Law of Sines relates the ratios of the lengths of the sides to the sines of the opposite angles. The Law of Cosines relates the lengths of the sides to the cosine of one of the angles. These laws extend the applications of trigonometry beyond right-angled triangles.
5 videos|292 docs|59 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

shortcuts and tricks

,

pdf

,

Free

,

Sample Paper

,

practice quizzes

,

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

,

Objective type Questions

,

video lectures

,

Summary

,

Viva Questions

,

Previous Year Questions with Solutions

,

mock tests for examination

,

MCQs

,

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

,

ppt

,

Extra Questions

,

study material

,

past year papers

,

Exam

,

NCERT Solutions for Class 10 Maths Chapter 8 - Chapter 8: Introduction to Trigonometry

,

Important questions

;