NCERT Textbook - The Living World NEET Notes | EduRev

NCERT Textbooks (Class 6 to Class 12)

Created by: Sushil Kumar

NEET : NCERT Textbook - The Living World NEET Notes | EduRev

 Page 1


Biology is the science of life forms and living processes. The living world
comprises an amazing diversity of living organisms. Early man could
easily perceive the difference between inanimate matter and living
organisms. Early man deified some of the inanimate matter (wind, sea,
fire etc.) and some among the animals and plants. A common feature of
all such forms of inanimate and animate objects was the sense of awe
or fear that they evoked. The description of living organisms including
human beings began much later in human history. Societies which
indulged in anthropocentric view of biology could register limited
progress in biological knowledge. Systematic and monumental
description of life forms brought in, out of necessity, detailed systems
of identification, nomenclature and classification. The biggest spin off
of such studies was the recognition of the sharing of similarities among
living organisms both horizontally and vertically. That all present day
living organisms are related to each other and also to all organisms
that ever lived on this earth, was a revelation which humbled man and
led to cultural movements for conservation of biodiversity. In the
following chapters of this unit, you will get a description, including
classification, of animals and plants from a taxonomist’s perspective.
DIVERSITY IN THE LIVING WORLD
Chapter 1
The Living World
Chapter 2
Biological Classification
Chapter 3
Plant Kingdom
Chapter 4
Animal Kingdom
UNIT 1
Page 2


Biology is the science of life forms and living processes. The living world
comprises an amazing diversity of living organisms. Early man could
easily perceive the difference between inanimate matter and living
organisms. Early man deified some of the inanimate matter (wind, sea,
fire etc.) and some among the animals and plants. A common feature of
all such forms of inanimate and animate objects was the sense of awe
or fear that they evoked. The description of living organisms including
human beings began much later in human history. Societies which
indulged in anthropocentric view of biology could register limited
progress in biological knowledge. Systematic and monumental
description of life forms brought in, out of necessity, detailed systems
of identification, nomenclature and classification. The biggest spin off
of such studies was the recognition of the sharing of similarities among
living organisms both horizontally and vertically. That all present day
living organisms are related to each other and also to all organisms
that ever lived on this earth, was a revelation which humbled man and
led to cultural movements for conservation of biodiversity. In the
following chapters of this unit, you will get a description, including
classification, of animals and plants from a taxonomist’s perspective.
DIVERSITY IN THE LIVING WORLD
Chapter 1
The Living World
Chapter 2
Biological Classification
Chapter 3
Plant Kingdom
Chapter 4
Animal Kingdom
UNIT 1
Born on 5 July 1904, in Kempten, Germany, ERNST MAYR, the
Harvard University evolutionary biologist who has been called
‘The Darwin of the 20
th
 century’, was one of the 100 greatest
scientists of all time. Mayr joined Harvard’s Faculty of Arts
and Sciences in 1953 and retired in 1975, assuming the title
Alexander Agassiz Professor of Zoology Emeritus. Throughout
his nearly 80-year career, his research spanned ornithology,
taxonomy, zoogeography, evolution, systematics, and the
history and philosophy of biology. He almost single-handedly
made the origin of species diversity the central question of
evolutionary biology that it is today. He also pioneered the
currently accepted definition of a biological species. Mayr was
awarded the three prizes widely regarded as the triple crown of
biology: the Balzan Prize in 1983, the International Prize for
Biology in 1994, and the Crafoord Prize in 1999. Mayr died at
the age of 100 in the year 2004.
Ernst Mayr
(1904 – 2004)
Page 3


Biology is the science of life forms and living processes. The living world
comprises an amazing diversity of living organisms. Early man could
easily perceive the difference between inanimate matter and living
organisms. Early man deified some of the inanimate matter (wind, sea,
fire etc.) and some among the animals and plants. A common feature of
all such forms of inanimate and animate objects was the sense of awe
or fear that they evoked. The description of living organisms including
human beings began much later in human history. Societies which
indulged in anthropocentric view of biology could register limited
progress in biological knowledge. Systematic and monumental
description of life forms brought in, out of necessity, detailed systems
of identification, nomenclature and classification. The biggest spin off
of such studies was the recognition of the sharing of similarities among
living organisms both horizontally and vertically. That all present day
living organisms are related to each other and also to all organisms
that ever lived on this earth, was a revelation which humbled man and
led to cultural movements for conservation of biodiversity. In the
following chapters of this unit, you will get a description, including
classification, of animals and plants from a taxonomist’s perspective.
DIVERSITY IN THE LIVING WORLD
Chapter 1
The Living World
Chapter 2
Biological Classification
Chapter 3
Plant Kingdom
Chapter 4
Animal Kingdom
UNIT 1
Born on 5 July 1904, in Kempten, Germany, ERNST MAYR, the
Harvard University evolutionary biologist who has been called
‘The Darwin of the 20
th
 century’, was one of the 100 greatest
scientists of all time. Mayr joined Harvard’s Faculty of Arts
and Sciences in 1953 and retired in 1975, assuming the title
Alexander Agassiz Professor of Zoology Emeritus. Throughout
his nearly 80-year career, his research spanned ornithology,
taxonomy, zoogeography, evolution, systematics, and the
history and philosophy of biology. He almost single-handedly
made the origin of species diversity the central question of
evolutionary biology that it is today. He also pioneered the
currently accepted definition of a biological species. Mayr was
awarded the three prizes widely regarded as the triple crown of
biology: the Balzan Prize in 1983, the International Prize for
Biology in 1994, and the Crafoord Prize in 1999. Mayr died at
the age of 100 in the year 2004.
Ernst Mayr
(1904 – 2004)
How wonderful is the living world ! The wide range of living types is
amazing. The extraordinary habitats in which we find living organisms,
be it cold mountains, deciduous forests, oceans, fresh water lakes, deserts
or hot springs, leave us speechless. The beauty of a galloping horse, of
the migrating birds, the valley of flowers or the attacking shark evokes
awe and a deep sense of wonder. The ecological conflict and cooperation
among members of a population and among populations of a community
or even the molecular traffic inside a cell make us deeply reflect on – what
indeed is life? This question has two implicit questions within it. The first
is a technical one and seeks answer to what living is as opposed to the
non-living, and the second is a philosophical one, and seeks answer to
what the purpose of life is. As scientists, we shall not attempt answering
the second question. We will try to reflect on – what is living?
1.1 WHAT IS ‘LIVING’?
When we try to define ‘living’, we conventionally look for distinctive
characteristics exhibited by living organisms. Growth, reproduction, ability
to sense environment and mount a suitable response come to our mind
immediately as unique features of living organisms. One can add a few
more features like metabolism, ability to self-replicate, self-organise,
interact and emergence to this list. Let us try to understand each of these.
All living organisms grow. Increase in mass and increase in number
of individuals are twin characteristics of growth. A multicellular organism
THE LIVING WORLD
CHAPTER  1
1.1 What is ‘Living’?
1.2 Diversity in the
Living World
1.3 Taxonomic
Categories
1.4 Taxonomical
Aids
Page 4


Biology is the science of life forms and living processes. The living world
comprises an amazing diversity of living organisms. Early man could
easily perceive the difference between inanimate matter and living
organisms. Early man deified some of the inanimate matter (wind, sea,
fire etc.) and some among the animals and plants. A common feature of
all such forms of inanimate and animate objects was the sense of awe
or fear that they evoked. The description of living organisms including
human beings began much later in human history. Societies which
indulged in anthropocentric view of biology could register limited
progress in biological knowledge. Systematic and monumental
description of life forms brought in, out of necessity, detailed systems
of identification, nomenclature and classification. The biggest spin off
of such studies was the recognition of the sharing of similarities among
living organisms both horizontally and vertically. That all present day
living organisms are related to each other and also to all organisms
that ever lived on this earth, was a revelation which humbled man and
led to cultural movements for conservation of biodiversity. In the
following chapters of this unit, you will get a description, including
classification, of animals and plants from a taxonomist’s perspective.
DIVERSITY IN THE LIVING WORLD
Chapter 1
The Living World
Chapter 2
Biological Classification
Chapter 3
Plant Kingdom
Chapter 4
Animal Kingdom
UNIT 1
Born on 5 July 1904, in Kempten, Germany, ERNST MAYR, the
Harvard University evolutionary biologist who has been called
‘The Darwin of the 20
th
 century’, was one of the 100 greatest
scientists of all time. Mayr joined Harvard’s Faculty of Arts
and Sciences in 1953 and retired in 1975, assuming the title
Alexander Agassiz Professor of Zoology Emeritus. Throughout
his nearly 80-year career, his research spanned ornithology,
taxonomy, zoogeography, evolution, systematics, and the
history and philosophy of biology. He almost single-handedly
made the origin of species diversity the central question of
evolutionary biology that it is today. He also pioneered the
currently accepted definition of a biological species. Mayr was
awarded the three prizes widely regarded as the triple crown of
biology: the Balzan Prize in 1983, the International Prize for
Biology in 1994, and the Crafoord Prize in 1999. Mayr died at
the age of 100 in the year 2004.
Ernst Mayr
(1904 – 2004)
How wonderful is the living world ! The wide range of living types is
amazing. The extraordinary habitats in which we find living organisms,
be it cold mountains, deciduous forests, oceans, fresh water lakes, deserts
or hot springs, leave us speechless. The beauty of a galloping horse, of
the migrating birds, the valley of flowers or the attacking shark evokes
awe and a deep sense of wonder. The ecological conflict and cooperation
among members of a population and among populations of a community
or even the molecular traffic inside a cell make us deeply reflect on – what
indeed is life? This question has two implicit questions within it. The first
is a technical one and seeks answer to what living is as opposed to the
non-living, and the second is a philosophical one, and seeks answer to
what the purpose of life is. As scientists, we shall not attempt answering
the second question. We will try to reflect on – what is living?
1.1 WHAT IS ‘LIVING’?
When we try to define ‘living’, we conventionally look for distinctive
characteristics exhibited by living organisms. Growth, reproduction, ability
to sense environment and mount a suitable response come to our mind
immediately as unique features of living organisms. One can add a few
more features like metabolism, ability to self-replicate, self-organise,
interact and emergence to this list. Let us try to understand each of these.
All living organisms grow. Increase in mass and increase in number
of individuals are twin characteristics of growth. A multicellular organism
THE LIVING WORLD
CHAPTER  1
1.1 What is ‘Living’?
1.2 Diversity in the
Living World
1.3 Taxonomic
Categories
1.4 Taxonomical
Aids
4 BIOLOGY
grows by cell division. In plants, this growth by cell division occurs
continuously throughout their life span. In animals, this growth is seen
only up to a certain age. However, cell division occurs in certain tissues to
replace lost cells. Unicellular organisms also grow by cell division. One
can easily observe this in in vitro cultures by simply counting the number
of cells under the microscope. In majority of higher animals and plants,
growth and reproduction are mutually exclusive events. One must
remember that increase in body mass is considered as growth. Non-living
objects also grow if we take increase in body mass as a criterion for growth.
Mountains, boulders and sand mounds do grow. However, this kind of
growth exhibited by non-living objects is by accumulation of material on
the surface. In living organisms, growth is from inside. Growth, therefore,
cannot be taken as a defining property of living organisms. Conditions
under which it can be observed in all living organisms have to be explained
and then we understand that it is a characteristic of living systems. A
dead organism does not grow.
Reproduction, likewise, is a characteristic of living organisms.
In multicellular organisms, reproduction refers to the production of
progeny possessing features more or less similar to those of parents.
Invariably and implicitly we refer to sexual reproduction. Organisms
reproduce by asexual means also. Fungi multiply and spread easily due
to the millions of asexual spores they produce. In lower organisms like
yeast and hydra, we observe budding. In Planaria (flat worms), we observe
true regeneration, i.e., a fragmented organism regenerates the lost part of
its body and becomes, a new organism. The fungi, the filamentous algae,
the protonema of mosses, all easily multiply by fragmentation. When it
comes to unicellular organisms like bacteria, unicellular algae or Amoeba,
reproduction is synonymous with growth, i.e., increase in number of cells.
We have already defined growth as equivalent to increase in cell number
or mass. Hence, we notice that in single-celled organisms, we are not very
clear about the usage of these two terms – growth and reproduction.
Further, there are many organisms which do not reproduce (mules, sterile
worker bees, infertile human couples, etc). Hence, reproduction also cannot
be an all-inclusive defining characteristic of living organisms. Of course,
no non-living object is capable of reproducing or replicating by itself.
Another characteristic of life is metabolism. All living organisms
are made of chemicals. These chemicals, small and big, belonging to
various classes, sizes, functions, etc., are constantly being made and
changed into some other biomolecules. These conversions are chemical
reactions or metabolic reactions. There are thousands of metabolic
reactions occurring simultaneously inside all living organisms, be they
Page 5


Biology is the science of life forms and living processes. The living world
comprises an amazing diversity of living organisms. Early man could
easily perceive the difference between inanimate matter and living
organisms. Early man deified some of the inanimate matter (wind, sea,
fire etc.) and some among the animals and plants. A common feature of
all such forms of inanimate and animate objects was the sense of awe
or fear that they evoked. The description of living organisms including
human beings began much later in human history. Societies which
indulged in anthropocentric view of biology could register limited
progress in biological knowledge. Systematic and monumental
description of life forms brought in, out of necessity, detailed systems
of identification, nomenclature and classification. The biggest spin off
of such studies was the recognition of the sharing of similarities among
living organisms both horizontally and vertically. That all present day
living organisms are related to each other and also to all organisms
that ever lived on this earth, was a revelation which humbled man and
led to cultural movements for conservation of biodiversity. In the
following chapters of this unit, you will get a description, including
classification, of animals and plants from a taxonomist’s perspective.
DIVERSITY IN THE LIVING WORLD
Chapter 1
The Living World
Chapter 2
Biological Classification
Chapter 3
Plant Kingdom
Chapter 4
Animal Kingdom
UNIT 1
Born on 5 July 1904, in Kempten, Germany, ERNST MAYR, the
Harvard University evolutionary biologist who has been called
‘The Darwin of the 20
th
 century’, was one of the 100 greatest
scientists of all time. Mayr joined Harvard’s Faculty of Arts
and Sciences in 1953 and retired in 1975, assuming the title
Alexander Agassiz Professor of Zoology Emeritus. Throughout
his nearly 80-year career, his research spanned ornithology,
taxonomy, zoogeography, evolution, systematics, and the
history and philosophy of biology. He almost single-handedly
made the origin of species diversity the central question of
evolutionary biology that it is today. He also pioneered the
currently accepted definition of a biological species. Mayr was
awarded the three prizes widely regarded as the triple crown of
biology: the Balzan Prize in 1983, the International Prize for
Biology in 1994, and the Crafoord Prize in 1999. Mayr died at
the age of 100 in the year 2004.
Ernst Mayr
(1904 – 2004)
How wonderful is the living world ! The wide range of living types is
amazing. The extraordinary habitats in which we find living organisms,
be it cold mountains, deciduous forests, oceans, fresh water lakes, deserts
or hot springs, leave us speechless. The beauty of a galloping horse, of
the migrating birds, the valley of flowers or the attacking shark evokes
awe and a deep sense of wonder. The ecological conflict and cooperation
among members of a population and among populations of a community
or even the molecular traffic inside a cell make us deeply reflect on – what
indeed is life? This question has two implicit questions within it. The first
is a technical one and seeks answer to what living is as opposed to the
non-living, and the second is a philosophical one, and seeks answer to
what the purpose of life is. As scientists, we shall not attempt answering
the second question. We will try to reflect on – what is living?
1.1 WHAT IS ‘LIVING’?
When we try to define ‘living’, we conventionally look for distinctive
characteristics exhibited by living organisms. Growth, reproduction, ability
to sense environment and mount a suitable response come to our mind
immediately as unique features of living organisms. One can add a few
more features like metabolism, ability to self-replicate, self-organise,
interact and emergence to this list. Let us try to understand each of these.
All living organisms grow. Increase in mass and increase in number
of individuals are twin characteristics of growth. A multicellular organism
THE LIVING WORLD
CHAPTER  1
1.1 What is ‘Living’?
1.2 Diversity in the
Living World
1.3 Taxonomic
Categories
1.4 Taxonomical
Aids
4 BIOLOGY
grows by cell division. In plants, this growth by cell division occurs
continuously throughout their life span. In animals, this growth is seen
only up to a certain age. However, cell division occurs in certain tissues to
replace lost cells. Unicellular organisms also grow by cell division. One
can easily observe this in in vitro cultures by simply counting the number
of cells under the microscope. In majority of higher animals and plants,
growth and reproduction are mutually exclusive events. One must
remember that increase in body mass is considered as growth. Non-living
objects also grow if we take increase in body mass as a criterion for growth.
Mountains, boulders and sand mounds do grow. However, this kind of
growth exhibited by non-living objects is by accumulation of material on
the surface. In living organisms, growth is from inside. Growth, therefore,
cannot be taken as a defining property of living organisms. Conditions
under which it can be observed in all living organisms have to be explained
and then we understand that it is a characteristic of living systems. A
dead organism does not grow.
Reproduction, likewise, is a characteristic of living organisms.
In multicellular organisms, reproduction refers to the production of
progeny possessing features more or less similar to those of parents.
Invariably and implicitly we refer to sexual reproduction. Organisms
reproduce by asexual means also. Fungi multiply and spread easily due
to the millions of asexual spores they produce. In lower organisms like
yeast and hydra, we observe budding. In Planaria (flat worms), we observe
true regeneration, i.e., a fragmented organism regenerates the lost part of
its body and becomes, a new organism. The fungi, the filamentous algae,
the protonema of mosses, all easily multiply by fragmentation. When it
comes to unicellular organisms like bacteria, unicellular algae or Amoeba,
reproduction is synonymous with growth, i.e., increase in number of cells.
We have already defined growth as equivalent to increase in cell number
or mass. Hence, we notice that in single-celled organisms, we are not very
clear about the usage of these two terms – growth and reproduction.
Further, there are many organisms which do not reproduce (mules, sterile
worker bees, infertile human couples, etc). Hence, reproduction also cannot
be an all-inclusive defining characteristic of living organisms. Of course,
no non-living object is capable of reproducing or replicating by itself.
Another characteristic of life is metabolism. All living organisms
are made of chemicals. These chemicals, small and big, belonging to
various classes, sizes, functions, etc., are constantly being made and
changed into some other biomolecules. These conversions are chemical
reactions or metabolic reactions. There are thousands of metabolic
reactions occurring simultaneously inside all living organisms, be they
THE LIVING WORLD 5
unicellular or multicellular. All plants, animals, fungi and microbes exhibit
metabolism. The sum total of all the chemical reactions occurring in our
body is metabolism. No non-living object exhibits metabolism. Metabolic
reactions can be demonstrated outside the body in cell-free systems. An
isolated metabolic reaction(s) outside the body of an organism, performed
in a test tube is neither living nor non-living. Hence, while metabolism is
a defining feature of all living organisms without exception, isolated
metabolic reactions in vitro are not living things but surely living reactions.
Hence, cellular organisation of the body is the defining feature of
life forms.
Perhaps, the most obvious and technically complicated feature of all
living organisms is this ability to sense their surroundings or environment
and respond to these environmental stimuli which could be physical,
chemical or biological. We sense our environment through our sense
organs. Plants respond to external factors like light, water,  temperature,
other organisms, pollutants, etc. All organisms, from the prokaryotes to
the most complex eukaryotes can sense and respond to environmental
cues. Photoperiod affects reproduction in seasonal breeders, both plants
and animals. All organisms handle chemicals entering their bodies. All
organisms therefore, are ‘aware’ of their surroundings. Human being is
the only organism who is aware of himself, i.e., has self-consciousness.
Consciousness therefore, becomes the defining property of living
organisms.
When it comes to human beings, it is all the more difficult to define
the living state. We observe patients lying in coma in hospitals virtually
supported by machines which replace heart and lungs. The patient is
otherwise brain-dead. The patient has no self-consciousness. Are such
patients who never come back to normal life, living or non-living?
In higher classes, you will come to know that all living phenomena
are due to underlying interactions. Properties of tissues are not present
in the constituent cells but arise as a result of interactions among the
constituent cells. Similarly, properties of cellular organelles are not present
in the molecular constituents of the organelle but arise as a result of
interactions among the molecular components comprising the organelle.
These interactions result in emergent properties at a higher level of
organisation. This phenomenon is true in the hierarchy of organisational
complexity at all levels. Therefore, we can say that living organisms are
self-replicating, evolving and self-regulating interactive systems capable
of responding to external stimuli. Biology is the story of life on earth.
Biology is the story of evolution of living organisms on earth. All living
organisms – present, past and future, are linked to one another by the
sharing of the common genetic material, but to varying degrees.
Read More

Complete Syllabus of NEET

Dynamic Test

Content Category

Related Searches

NCERT Textbook - The Living World NEET Notes | EduRev

,

video lectures

,

past year papers

,

Exam

,

Objective type Questions

,

Summary

,

Previous Year Questions with Solutions

,

NCERT Textbook - The Living World NEET Notes | EduRev

,

practice quizzes

,

MCQs

,

pdf

,

NCERT Textbook - The Living World NEET Notes | EduRev

,

ppt

,

Viva Questions

,

study material

,

Semester Notes

,

shortcuts and tricks

,

Extra Questions

,

mock tests for examination

,

Important questions

,

Sample Paper

,

Free

;