Page 1
Arithmetic
Progression
Page 2
Arithmetic
Progression
Sequence: A list of numbers
having specific relation
between the consecutive
terms is generally called a
sequence.
e.g. 1, 3, 5, 7,……… (next term
to a term is obtained by
adding 2 with it)
& 2, 6, 18, 54,…….( next term
to a term is obtained by
multiplying 3 with it)
Page 3
Arithmetic
Progression
Sequence: A list of numbers
having specific relation
between the consecutive
terms is generally called a
sequence.
e.g. 1, 3, 5, 7,……… (next term
to a term is obtained by
adding 2 with it)
& 2, 6, 18, 54,…….( next term
to a term is obtained by
multiplying 3 with it)
Arithmetic Progression: If various terms of a
sequence are formed by adding a fixed
number to the previous term or the
difference between two successive
terms is a fixed number, then the sequence
is called AP.
e.g.1) 2, 4, 6, 8, ……… the sequence of even
numbers is an example of AP
2) 5, 10, 15, 20, 25…..
In this each term is obtained by adding 5 to
the preceding term except first term.
Page 4
Arithmetic
Progression
Sequence: A list of numbers
having specific relation
between the consecutive
terms is generally called a
sequence.
e.g. 1, 3, 5, 7,……… (next term
to a term is obtained by
adding 2 with it)
& 2, 6, 18, 54,…….( next term
to a term is obtained by
multiplying 3 with it)
Arithmetic Progression: If various terms of a
sequence are formed by adding a fixed
number to the previous term or the
difference between two successive
terms is a fixed number, then the sequence
is called AP.
e.g.1) 2, 4, 6, 8, ……… the sequence of even
numbers is an example of AP
2) 5, 10, 15, 20, 25…..
In this each term is obtained by adding 5 to
the preceding term except first term.
Illustrative example for A.P.
=d,where d=1
a a+d a+2d a+3d………………
Page 5
Arithmetic
Progression
Sequence: A list of numbers
having specific relation
between the consecutive
terms is generally called a
sequence.
e.g. 1, 3, 5, 7,……… (next term
to a term is obtained by
adding 2 with it)
& 2, 6, 18, 54,…….( next term
to a term is obtained by
multiplying 3 with it)
Arithmetic Progression: If various terms of a
sequence are formed by adding a fixed
number to the previous term or the
difference between two successive
terms is a fixed number, then the sequence
is called AP.
e.g.1) 2, 4, 6, 8, ……… the sequence of even
numbers is an example of AP
2) 5, 10, 15, 20, 25…..
In this each term is obtained by adding 5 to
the preceding term except first term.
Illustrative example for A.P.
=d,where d=1
a a+d a+2d a+3d………………
The general form of an Arithmetic Progression
is
a , a +d , a + 2d , a + 3d ………………, a + (n-
1)d
Where ‘a’ is first term and
‘d’ is called common difference.
Read More