Q1: sin2 60° + 2 tan 45° - cos2 30° [Allahabad 2019]
Ans: 2
Q2: If sin x + cos y = 1; x = 30° and is an acute angle, find the value of y. [CBSE 2019 (30/5/1)]
Ans: We have, sin x + cosy = 1
⇒ sin30° + cosy = 1
⇒ y = 600
Q3: Prove that: (1 + cot A - cosec A)(l + tan A + sec A) = 2 [CBSE 2019 (30/1/2)]
Ans: LHS = (1 + cotA-cosecA) (1 + tanA +secA)
Q4: Prove that: [CBSE 2019 (30/5/1)]
Ans:
Q 5: If cos θ + sin θ = √2cos θ , show that cos θ - sin θ = √2 sin θ. [CBSE 2019 (30/ 5/ 1)]
Ans: Given: cos θ + sin θ = √2cos θ
Now, (cos θ + sin θ)2 + ( cos θ - sin θ)2
cos2θ + sin2θ + 2cosθ. sin θ + cos2θ + sin2θ - 2cosθ. sinθ
1 + 1 = 2
Again, (cos θ + sin θ)2 + (cos θ - sin θ)2 = 2
⇒ (√2 cosθ)2 + (cos θ - sin θ)2 = 2
⇒ 2 cos2θ + ( cos θ - sin θ)2 = 2
⇒ (cos θ - sin θ)2 = 2 - 2cos2θ = 2 ( 1 - cos2θ)
= 2sin2θ
∴ cos θ - sin θ = √2 sin θ
Hence proved
Q6: Prove that: ( sin A + cosec A)2 + ( cos A + sec A)2 = 7 + tan2 A + cot2 4
[CBSE 2019 (30/1/2;]
Ans: LHS = (sin A + cosec A)2 + (cos A + sec A)2
=sin2 A + cosec2 A + 2sinA . cosec A + cos2 A + sec2 A + 2 cos A .sec A
= (sin2 A + cosec2 A + 2) + (cos2 A + sec2 A + 2) (sin A.cosec A = 1)
= (sin2 A + cos2A) + (cosec2 A + sec2 A) + 4 (cos A. sec A = 1)
= 1 + 1+ cot2 A + 1 + tan2 A + 4
= 7 + tan2 A + cot2 A = RHS (∵ 1 + cot2 A = cosec2 A and 1 + tan2 A = sec2 A)
Q7: If sin (A + 2B) and cos (A + 4B) = 0, A > B, and A + 4B ≤ 900 then find A and B. [CBSE 2018 (C)]
Ans:
So, sin(A + 2B) = sin 60°
Hence A + 2B = 60° ..(i)
Also, we have
cos(A + 4B) = 0
cos(A + 4B) = cos 90°
A + 4B = 90° ..(ii)
Subtracting (ii) from (i), we have
-2B = - 30°
=> B = 15°
Put B = 15° in eq. (i), we have
A + 2(15°) = 60°
⇒ A + 30° = 60°
⇒ A = 30°
Q1: Prove that: [CBSE 2019 (30/5/1)]
Ans: LHS
Q2: Prove that: [CBSE 2019 (30/5/1)]
Ans: LHS
115 videos|478 docs|129 tests
|
1. What is trigonometry and why is it important? | ![]() |
2. What are the basic trigonometric ratios and how are they used? | ![]() |
3. How do we find the values of trigonometric ratios for different angles? | ![]() |
4. How is trigonometry used in real-world applications? | ![]() |
5. How can trigonometry help in solving problems involving heights and distances? | ![]() |
115 videos|478 docs|129 tests
|
![]() |
Explore Courses for Class 10 exam
|
|