Class 7 Exam  >  Class 7 Notes  >  RD Sharma Solutions for Class 7 Mathematics  >  RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics PDF Download

Question 1:

A die was thrown 20 times and the following scores were recorded:
 5, 2, 1, 3, 4, 4, 5, 6, 2, 2, 4, 5, 5, 6, 2, 2, 4, 5, 5, 1
 Prepare the frequency table of the scores on the upper face of the die and find the mean score.

Answer 1:

The frequency table for the given data is as follows:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

In order to compute the arithmetic mean, we prepare the following table:

                                  Computation of Arithmetic Mean

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Question 2:

The daily wages (in Rs) of 15 workers in a factory are given below:
 200, 180, 150, 150, 130, 180, 180, 200, 150, 130, 180, 180, 200, 150, 180
 Prepare the frequency table and find the mean wage.

Answer 2:

The frequency table for the given data is as follows:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

In order to compute the mean wage, we prepare the following table:

Mean wages of the workers
xi fi fi xi
1302 260
1504 600
18061080
2003 600
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Question 3:

The following table shows the weights (in kg) of 15 workers in a factory:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

Calculate the mean weight.

Answer 3:

                                    Calculation of Mean

Calculation of Mean

 xififi xi
 60 4240
63 5315
66 3198
72 172
75 2150
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics 

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Question 4:

The ages (in years) of 50 students of a class in a school are given below:

Age (in years):1415161718
Numbers of students:15141083

Find the mean age

Answer 4:

 

        Calculation of Mean

 xififi xi
 14 15210
15 14210
16 10160
17 8136
18 354
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics 

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Question 5:

Calculate the mean for the following distribution:

:56789
f :4814113

Answer 5:

 

                       Calculation of Mean

 xififi xi
 5 420
6 848
7 1498
8 1188
9 327
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics 

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Question 6:

Find the mean of the following data:

x:19212325272931
f:13151618161513

Answer 6:

                    Calculation of Mean

xififixi
1913 247
2115315
2316368
2518450
2716432
2915435
3113403
Total  RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

  RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

Question 7:

The mean of the following data is 20.6. Find the value of p.

x:1015p2535
f:3102575

Answer 7:

            Calculation of Mean

xififi xi
10330
1510150
p2525p
257175
355175
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics


We have: 

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

⇒20.6×50 = 530 +25p  ⇒1030 = 530 +25p
⇒1030 − 530 = 25p  ⇒500 = 25p
⇒p = 500/25 ⇒ p = 20

 

Question 8:

If the mean of the following data is 15, find p.

x:510152025
f:6p6105

Answer 8:

                                 Calculation of Mean

xififi xi
5630
10p10p
15690
2010200
255125
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

We have:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

⇒15 (27 +p) = 445 +10p ⇒405 + 15p =445 +10p
⇒15p − 10p = 445 −405 ⇒5p = 40 ⇒p = 40÷5

Therefore, p =  8.

 

Question 9:

Find the value of p for the following distribution whose mean is 16.6

x:81215p202530
f:121620241684

Answer 9:

                     Calculation of Mean

xififixi
81296
1216192
1520300
p2424p
2016320
258200
304120
Total RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics


We have:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

⇒16.6×100 = 1228 +24p
⇒1660 = 1228 +24p
⇒1660 − 1228 = 24p
⇒432 = 24p
⇒p = 432/24
⇒p =18

 

Question 10:

Find the missing value of p for the following distribution whose mean is 12.58

x:581012p2025
f:25822742

Answer 10:

                      Calculation of Mean

xififixi
5210
8540
10880
1222264
p77p
20480
25250
Total RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics


We have:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

⇒12.58×50 = 524 +7p
⇒629 = 524 +7p
⇒629 − 524 = 7p
⇒105 = 7p
⇒p = 105/ 7
⇒p =15.

 

Question 11:

Find the missing frequency (p) for the following distribution whose mean is 7.68

x:35791113
f:6815p84

Answer 11:

             Calculation of Mean

xififi xi
3618
5840
715105
9p9p
11888
13452
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics


We have:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics
⇒7.68 × (41 +p) =303 +9p
⇒314.88 + 7.68p = 303 +9p 
⇒314.88 −303 = 9p −7.68p
⇒11.88 = 1.32p
RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Question 12:

Find the value of p, if the mean of the following distribution is 20

x:15171920 + p23
f:234p6

Answer 12:

              Calculation of Mean

xififi xi
15230
17351
19476
20 + p5p(20+p)5p
236138
TotalRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 MathematicsRD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics


We have:

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

⇒20 × (15 +5p) =295 + (20+p)5p⇒300+ 100p = 295 +100p + 5p

⇒ 300 - 295 + 100p -100p = 5p2 
⇒ 5 = 5p2 
⇒ p2 = 1 

The document RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics is a part of the Class 7 Course RD Sharma Solutions for Class 7 Mathematics.
All you need of Class 7 at this link: Class 7
97 docs

Top Courses for Class 7

FAQs on RD Sharma Solutions (Part - 1) - Ex-23.2, Data Handling II Central Values, Class 7, Math - RD Sharma Solutions for Class 7 Mathematics

1. What are central values in data handling?
Ans. Central values in data handling refer to the statistical measures that represent the middle or average value of a set of data. These values help in understanding the central tendency or central concentration of the data. The commonly used central values are mean, median, and mode.
2. How is the mean calculated for a set of data?
Ans. The mean of a set of data is calculated by summing up all the values in the data set and then dividing the sum by the total number of values. It is the most commonly used measure of central tendency. For example, if we have the data set 4, 7, 9, 10, the mean would be (4+7+9+10)/4 = 7.5.
3. What is the median value in data handling?
Ans. The median value in data handling is the middle value of a sorted set of data. To find the median, the data set is arranged in ascending or descending order, and then the middle value (or the average of two middle values if there is an even number of values) is taken as the median. It is a measure of central tendency that is not affected by extreme values.
4. How is the mode determined in data handling?
Ans. The mode in data handling refers to the value that appears most frequently in a set of data. To determine the mode, we identify the value that occurs with the highest frequency. It is possible to have more than one mode in a data set, known as multimodal data.
5. Why are central values important in data handling?
Ans. Central values are important in data handling as they provide a summary of the data set and help in understanding its central tendency. They help in making comparisons between different sets of data and drawing conclusions. Central values also assist in detecting outliers or unusual values that can significantly impact the interpretation of the data.
Explore Courses for Class 7 exam

Top Courses for Class 7

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Class 7

,

ppt

,

Sample Paper

,

study material

,

Exam

,

Previous Year Questions with Solutions

,

pdf

,

Semester Notes

,

past year papers

,

mock tests for examination

,

Class 7

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

RD Sharma Solutions (Part - 1) - Ex-23.2

,

RD Sharma Solutions (Part - 1) - Ex-23.2

,

video lectures

,

Important questions

,

Free

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

practice quizzes

,

Data Handling II Central Values

,

Extra Questions

,

Summary

,

Viva Questions

,

Class 7

,

Data Handling II Central Values

,

shortcuts and tricks

,

RD Sharma Solutions (Part - 1) - Ex-23.2

,

Objective type Questions

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

MCQs

,

Data Handling II Central Values

;