Class 10 Exam  >  Class 10 Notes  >  Extra Documents, Videos & Tests for Class 10  >  RD Sharma Solutions - Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 PDF Download

 3.) In the below figure, find tan P and cot R. Is tan P = cot R? 

  Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10                   

 To find, tan P, cot R

Sol.

In the given right angled ΔPQR, length of side OR is unknown

Therefore , by applying Pythagoras theorem in ΔPQR

We get,

PR2  = PQ2 + QR2

Substituting the length of given side PR and PQ in the above equation

132 = 122 + QR2

QR2  = 132 – 122

QR2  = 169 – 144

QR2 = 25

QR =  Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

By definiton, we know that ,

tanP = Perpendicularsideoppositeto∠P/Basesideadjacentto∠P

tanP = QR/PQ

tanP = 5/12 …. (1)

Also, by definition, we know that

cotR = Basesideadjacentto∠R/Perpendicularsideoppositeto∠R

cotR = QR/PQ

cotR = 5/12 …. (2)

Comparing equation (1) ad (2), we come to know that that R.H.S of both the equation are equal.

Therefore, L.H.S of both equations is also equal

tan P = cot R

Answer:

Yes , tan P = cot R =  5/12

 

4.)  If sin A =  9/41, Compute cos A and tan A.

Sol. Given:  sinA = 9/41 …. (1)

To find: cos A, tan A

By definition,

sinA = Perpendicularsideoppositeto∠A/Hypotenuse …. (2)

By comparing (1) and (2)

We get ,

Perpendicular side = 9 and

Hypotenuse = 41

Now using the perpendicular side and hypotenuse we can construct ΔABC as shown below

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Length of side AB is unknown is right angled ΔABC ,

To find the length of side AB, we use Pythagoras theorem,

Therefore, by applying Pythagoras theorem in ΔABC ,

We get,

AC2  = AB2 + BC2

412  = AB2 + 92

AB2  = 412 – 92

AB2  = 168 – 81

AB = 1600

AB =   Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

AB = 40

Hence, length of side AB = 40

Now

By definition,

cosA = Basesideadjacentto∠A/Hypotenuse

cosA = AB/AC

cosA = 40/41

Now,

By definition,

tanA = Perpendicularsideoppositeto∠A/Basesideadjacentto∠A

tanA = BC/AB

tanA = 9/40

Answer:

cosA = 40/41 , tanA = 9/40

 

5.)  Given 15cot A = 8, find sin A and sec A.

Answer: Given: 15cot A = 8

To find: sin A, sec A

Since 15 cot A = 8

By taking 15 on R.H.S

We get,

cotA = 8/15

By definition,

cotA = 1/tanA

Hence,

cotA = 1Perpendicularsideoppositeto∠A/Basesideadjacentto∠A

cotA = Basesideadjacentto∠A/Perpendicularsideoppositeto∠A …. (2)

Comparing equation (1) and (2)

We get,

Base side adjacent to ∠A  = 8

Perpendicular side opposite to ∠A  = 15

ΔABC can be drawn below using above information

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Hypotenuse side is unknown.

Therefore, we find side AC of ΔABC by Pythagoras theorem.

So, by applying Pythagoras theorem to ΔABC

We get,

AC2  = AB2 +BC2

Substituting values of sides from the above figure

AC2  = 82 + 152

AC2  = 64 + 225

AC2  = 289

AC = Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

AC = 17

Therefore, hypotenuse = 17

Now by definition,

sinA = Perpendicularsideoppositeto∠A/Hypotenuse

Therefore, sinA = BC/AC

Substituting values of sides from the above figure

sinA = 1517

By definition,

secA = 1/cosA

Hence,

secA = Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

secA = Hypotenuse/Basesideadjacentto∠A

Substituting values of sides from the above figure

secA = 17/8

Answer:

 sinA = 15/17, secA = 17/8

 

  6.) In ΔPQR , right angled at Q, PQ = 4cm and RQ = 3 cm .Find the value of sin P,   sin R , sec P and sec R.

Sol. Given:

ΔPQR is right angled at vertex Q.

PQ = 4cm

RQ = 3cm

To find,

sin P, sin R , sec P , sec R  

                Given ΔPQR is as shown below

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Hypotenuse side PR is unknown.

Therefore, we find side PR of ΔPQR by Pythagoras theorem

By applying Pythagoras theorem to ΔPQR

We get,

PR2  = PQ2 +RQ2

Substituting values of sides from the above figure

PR2  = 42 +32

 PR2  = 16 + 9

PR2  = 25

PR =  Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

PR = 5

Hence, Hypotenuse = 5

Now by definition,

sinP = Perpendicularsideoppositeto∠P/Hypotenuse

sinP = RQ/PR

Substituting values of sides from the above figure

sinP = 3/5

Now by definition,

sinR = Perpendicularsideoppositeto∠R/Hypotenuse

sinR = PQ/PR

Substituting the values of sides from above figure

sinR = 4/5

By definition,

secP = 1/cosP

secP = Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

secP = Hypotenuse/Basesideadjacentto∠P

Substituting values of sides from the above figure

secP = PR/PQ

secP = 5/4

By definition,

secR = 1/cosR

secR = Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

secR = Hypotenuse/Basesideadjacentto∠R

Substituting values of sides from the above figure

secR = PR/RQ

secR = 5/3

Answer:

sinP = 3/5 , sinR = 4/5,

secP = 5/4, secR = 5/3

 

7.)   If cotΘ = 7/8, evaluate

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

(ii)  cot2Θ

Sol. Given: cotΘ = 7/8

To evaluate:  Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

We know the following formula

(a + b)(a – b) = a2 – b2

By applying the above formula in the numerator of equation (1)

We get,

(1+sinθ)×(1–sinθ) = 1–sin2θ.....(2)(Where,a = 1andb = sinθ)

Similarly,

By applying formula (a +b) (a – b) = a2 – b2 in the denominator  of equation (1).

We get,

(1+cosΘ)(1–cosΘ) = 12–cos2Θ … (Where a = 1 and b =   cosΘ

(1+cosΘ)(1–cosΘ) = 1–cos2Θ … (Where a = 1 and b =   cosΘ

Substituting the value of numerator and denominator of equation (1) from equation (2), equation (3).

Therefore,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Since,

cos2Θ + sin2Θ = 1

Therefore,

cos2Θ = 1–sin2 Θ

Also, sin2Θ = 1–cos2Θ

Putting the value of 1–sin2Θ and 1–cos2Θ in equation (4)

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

We know that, Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Since, it is given that cotΘ = 7/8

Therefore,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

(ii) Given: cotΘ = 7/8

To evaluate: cot2Θ

cotΘ = 7/8

Squaring on both sides,

We get,

(cotΘ)2 = (7/8)2

(cotΘ)2 = 49/64

Answer:

49/64

 

8.) If 3cotA = 4 , check whether  Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cos2A – sin2A or not.

Sol. Given: 3cot A = 4

To check whether Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cos2A – sin2A or not.

3cot A = 4

Dividing by 3 on both sides,

We get,

cot A =  4/3 …. (1)

By definition,

cotA = 1/tanA

Therefore,

cotA =Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

cotA = Basesideadjacentto∠A/Perpendicularsideoppositeto∠A …. (2)

Comparing (1) and (2)

We get,

Base side adjacent to ∠A  = 4

Perpendicular side opposite to ∠A  = 3

Hence ΔABC is as shown in figure below

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

In ΔABC , Hypotenuse is unknown

Hence, it can be found by using Pythagoras theorem

Therefore by applying Pythagoras theorem inΔABC

We get

AC2 = AB2 +BC2

Substituting the values of sides from the above figure

AC2  = 42 + 32

AC2  = 16 +9

AC2  = 25

AC = Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

AC = 5

Hence, hypotenuse = 5

To check whether

To check whether Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cos2A–sin2A or not.

We get thee values of tan A , cos A , sin A

By definition,

tan A =  1/cotA

Substituting the value of cot A from equation (1)

We get,

tan A  =  1/4

tan A =  3/4 …. (3)

Now by definition,

cosA = Basesideadjacentto∠A/Hypotenuse

cosA = AB/AC

Substituting the values of sides from the above figure

cosA = 4/5 …. (5)

Now we first take L.H.S of equation Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cos2A – sin2A

L.H.S = Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Substituting value of tan A from equation (3)

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Taking L.C.M on both numerator and denominator

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Now we take R.H.S of equation whether Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cos2A–sin2A

R.H.S =  cos2A – sin2A

Substituting value of sin A and cos A from equation (4) and (5)

We get,

R.H.S = Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Comparing (6) and (7)

We get.

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cos2A–sin2A

Answer:

Yes, Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10= cos2A–sin2A

 

 9.)  If tanΘ = ab , find the value of Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Sol.

Given:

tanΘ = a/b …. (1)

Now, we know that tanΘ = sinΘ/cosΘ

Therefore equation (1) become as follows

sinΘ/cosΘ  = a/b

Now, by applying invertendo

We get,

cosΘ/sinΘ = b/a

Now by applying Componendo – dividendo

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Therefore,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

 

10.)    If 3tanΘ = 4 , find the value of Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Sol.

Given: If 3tanΘ = 4

Therefore,

tanΘ = 4/3 …. (1)

Now, we know that tanΘ = sinΘ/cosΘ

Therefore equation (1) becomes

sinΘ/cosΘ = 4/3 ….(2)

Now, by applying Invertendo to equation (2)

We get,

cosΘ/sinΘ = 3/4 …. (3)

Now, multiplying by 4 on both sides

We get

4×cosΘ/sinΘ = 4×3/4

Therefore

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Now, multiplying by 2 on both sides of equation (3)

We get,

2cosΘ/sinΘ = 3/2

Now by applying componendo in above equation

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Therefore,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Therefore, on L.H.S sinΘ cancels and we get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Therefore,

4cosΘ–sinΘ = 4

 

11.)   If 3cotΘ = 2, find the value of Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10                                                                                                                                                                                    Sol.

Given:

3cotΘ = 2

Therefore,

cotΘ = 2/3 …. (1)

Now, we know that cotΘ = cosΘ/sinΘ

Therefore equation (1) becomes

cosΘ/sinΘ = 2/3 ….(2)

Now , by applying invertendo to equation (2)

sinΘ/cosΘ = 3/2 ….(3)

Now, multiplying by 43 on both sides,

We get,

4/3 × sinΘ/cosΘ = 4/3 × 3/2

Therefore, 3 cancels out on R.H.S and

We get,

4sinΘ/3cosΘ = 2/1

Now by applying invertendo dividendo in above equation

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Now, multiplying by 2/6 on both sides of equation (3)

We get,

2/6 × sinΘ/cosΘ = 2/6 × 3/2

Therefore, 2 cancels out on R.H.S and

We get,

2sinΘ/6cosΘ = 3/6

2sinΘ/6cosΘ = 1/2

Now by applying componendo in above equation

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Now, by dividing equation (4) by (5)

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Therefore,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Therefore, on L.H.S (3 sinΘ) cancels out and we get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Now, by taking 2 in the numerator of L.H.S on the R.H.S

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Therefore, 2 cancels out on R.H.S and

We get,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Hence answer,

Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

The document Ex-5.1 Trigonometric Ratios(Part - 2), Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 is a part of the Class 10 Course Extra Documents, Videos & Tests for Class 10.
All you need of Class 10 at this link: Class 10
5 videos|292 docs|59 tests

Top Courses for Class 10

5 videos|292 docs|59 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Ex-5.1 Trigonometric Ratios(Part - 2)

,

Maths RD Sharma Solutions | Extra Documents

,

practice quizzes

,

study material

,

Extra Questions

,

Exam

,

Sample Paper

,

Videos & Tests for Class 10

,

video lectures

,

past year papers

,

MCQs

,

Maths RD Sharma Solutions | Extra Documents

,

Previous Year Questions with Solutions

,

Objective type Questions

,

Viva Questions

,

Videos & Tests for Class 10

,

shortcuts and tricks

,

Semester Notes

,

Summary

,

ppt

,

Class 10

,

Free

,

mock tests for examination

,

pdf

,

Ex-5.1 Trigonometric Ratios(Part - 2)

,

Videos & Tests for Class 10

,

Class 10

,

Important questions

,

Ex-5.1 Trigonometric Ratios(Part - 2)

,

Class 10

,

Maths RD Sharma Solutions | Extra Documents

;