Class 10 Exam  >  Class 10 Notes  >  RS Aggarwal Solutions for Class 10 Mathematics  >  RS Aggarwal Solutions: Summative Assessment- 2

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics PDF Download

Sample Paper: II

Q.1. What is the largest number that divides 245 and 1029, leaving remainder 5 in each case?
(a) 15
(b)16
(c) 9
(d) 5

We know that Dividend = Divisor × Quotient + Remainder
According to the problem :
Dividend 1 = 245
Dividend 2 = 1029
Dividend - Remainder = Divisor × Quotient
So Dividend 1- Remainder = 240 = Divisor × Quotient 1
Prime Factor of 240 = 24 × 3 × 5
Dividend 2 – Remainder = 1024 = Divisor × Quotient 2
Prime Factor of 1024 = 24 × 26
Since, the Divisor is common for both the numbers we need to find the Highest Common Factor between both the numbers. From the Prime factors, we find the
Highest Common Factor between the two numbers is 24 = 16


Q.2. If the product of zeros of the polynomial ax2 – 6x – 6 is 4, then a =?
(a) 2/3
(b) –2/3
(c) 3/2
(d) –3/2

Given Equation :ax2 – 6x – 6 = 0
which is of the form ax2 + bx + c = 0 (General Form)
The product of the roots of the general form of equation = c/a
So according to the given Equation Product of the roots = -(6/a)
⇒ - (6/a) = 4
The Value Of a for which the equation has product of root 4 = a = -(3/2) 


Q.3. The areas of two similar triangles ΔABC and ΔPQR are 25 cm2 and 49 cm2 respectively and QR = 9.8 cm. Then BC = ?
(a) 5 cm
(b) 8 cm
(c) 7 cm
(d) 6.3 cm

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Given :
Area of ΔABC = 25 cm2
Area of ΔPQR = 49 cm2
Length of QR = 9.8 cm.
Since both the triangles are similar so according to the Area –Length relations of similar triangle we can write
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
The length Of The side BC is 7 cm.


Q.4. If sin (θ + 34°) = cos θ and θ + 34° is acute, then θ = ?
(a) 56°
(b) 28°
(c) 17°
(d) 14°

Given sin (θ + 34°) = cos θ …Equation 1
Since sin θ & cos θ are complementary to each other
so sin θ = cos (90° – θ)
Using the above relations in Equation 1 we get
cos (90° – θ – 34°) = cos θ
Since both L.H.S. and R.H.S. are functions of cosine and θ + 34° is acute so we can write
90° – θ – 34° = θ
⇒ 2θ = 56°
⇒ θ = 28°


Q.5. lf cos θ = 0.6, then 5sin θ - 3tan θ = ?
(a) 0.4
(b) 0.2
(c) 0.3
(d) 0

Given cos θ = 0.6
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ sin θ = 0.8
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
According to the question, the required problem needs us to find
5 sin θ- 3 tan θ
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
The value of the expression is 0.


Q.6. The simplest form of 1095/1168
(a) 17/26
(b) 25/26
(c) 15/16
(d) 13/16

Prime factorization of 1095 = 5×3×73
Prime factorization of 1168 = 24 ×73
So RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since 73 is a common factor for both numerator and denominator so it cancels out
The Simplest form is 15/16.


Q.7. The pair of linear equations 4x - 5y - 20 = 0 and 3x + 5y -15 = 0 has
(a) a unique solution
(b) two solutions
(c) many solutions
(d) no solution

Equation 1: 4x - 5y = 20
Equation 2: 3x + 5y = 15
Both the equations are in the form of :
a1x + b1y= c1 & a2x + b2y = c2 where
According to the problem:
a1 = 4
a2 = 3
b1 = -5
b2 = 5
c1 = 20
c2 = 15
We compare the ratios RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics , So
It has a Unique solution


Q.8. If mode = x(median) - y(mean), then
(a) x = 2, y = 3
(b) x = 3, y = 2
(c) x = 4, y = 3
(d) x = 3, y = 4

Given: mode = x(median) - y(mean)
According to an empirical relation, the relation between Mean, Median & Mode is given by
Mode = 3 Median – 2 Mean …Eq(1)
This empirical relation is very much close to the actual value of mode which is calculated. So this relation is valid.
Comparing the Relation given with equation 1 we find
x = 3 & y = 2


Q.9. Check whether 6" can end with the digit 0? Justify your answer.

When a number ends with 0 it has to be divisible by the factors of 10 which are 5 and 2
Now 6n = (3 × 2)n …Equation 1
From Equation 1 We can see the factors of 6 are only 3 & 2.
There are no factors as powers of 5 in the factorization of 6
Hence 6cannot end with 0.


Q.10. Find the zeros of the polynomial 9x2 - 5 and verify the relation between zeros and coefficients.

Given Equation : 9x2 - 5 = 0
which is of the form ax2 + bx + c = 0 (General Form)
For finding the zeroes of the polynomial we use the method of Factorization
9x2 - 5 = 0
⇒ 9x2 = 5
⇒ x2 = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ x = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
The zeroes of the polynomial expression areRS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics 


Q.11. If 2 sin 2θ = √3 find the value of θ.

Given 2 sin 2θ = √3
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ sin 2θ = sin 60°
⇒ 2θ = 60°
⇒ θ = 30°


Q.12. If 7 sin2θ + 3 cos2θ = 4, show that tan θ = 1/√3

Given: 7 sin2 θ + 3 cos2 θ = 4
Since sin2 θ + cos2 θ = 1 …Equation 1
So the equation becomes
4 sin2 θ = 1
⇒ sin2 θ = 1/4
From Equation 1 we get
cos2 θ = 3/4
Since RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Hence Proved.


Q.13. In ΔABC, D and E are points on AB and AC respectively such that AD = 5 cm, DB = 8 cm and DE || BC. If AC = 6.5 cm, then find AE.
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given :
AD = 5 cm
DB = 8 cm
AC = 6.5 cm
DE ||BC
In ΔABC & ΔADE
∠ADE = ∠ABC (Corresponding Angles)
∠AED = ∠ACB (Corresponding Angles)
So ΔABC & ΔADE are similar by the A.A. (Angle-Angle) axiom of Similarity
AB = AD + BD = 13 cm.
Since the two triangles are similar so their lengths of sides must be in proportion.
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
AE = 2.5cm.


Q.14. D is a point on the side BC of ΔABC such that ∠ADC and ∠BAC are equal. Prove that: CA2 = DC x CB.
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given:
∠ADC = ∠BAC
D is a point on the side BC
∠ACB = ∠ACD (Common Angle)
So ΔABC & ΔADC are similar by the A.A. (Angle-Angle) axiom of Similarity
Since the two triangles are similar so their lengths of sides must be in proportion
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Cross Multiplying We Get
CA2 = DC x CB
Which is the required expression
Hence Proved.


Q.15. Calculate the mode for the following frequency distribution:
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Class corresponding to maximum frequency = (4-8)
f1 (Frequency of the modal class) = 8
f0 (Frequency of the class preceding the modal class) = 4
f2 (Frequency of the succeeding modal class) = 5
l(lower limit) = 4
h(width of class) = 4
Mode = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ Mode = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Mode = 6.29.


Q.16. Show that any positive odd integer is of the form (6q + 1) or (6q + 3) or (6q + 5), where q is some integer.

According to Euclid’s algorithm p = 6q + r
where r is any whole number 0< = r<6 and p is a positive integer
Since 6q is divisible by 2 so the value of r will decide whether it is odd or even.
Also since r<6 so only 6 cases are possible
For r = 1 , 3, 5 we get three odd numbers and for r = 0 , 2 , 4 we get three even numbers
So (6q + 1) , (6q + 3) & (6q + 5) represents positive odd integers .
Hence Proved.


Q.17. Prove that (3 -√15) is irrational.

Let us assume (3 -√15 ) is rational
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics (Assume)
where a & b are integers (b≠0)
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Now let’s solve the R.H.S. Of the above equation
Let RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Squaring we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
In The above equation since 15 divides p2 so it must also divide p
so p is a multiple of 15
let p = 15k where k is an integer
Putting in Equation 1 the value of p we get
15q2 = 225k2
⇒ q2 = 15k2
Since 15 divides q2 so it must also divide q
so q is a multiple of 15
But this contradicts our previously assumed data since we had considered p & q has been resolved in their simplest form and they shouldn't have any common factors.
So √15 is irrational and hence
(3 -√15) is also irrational
Hence Proved.


Q.18. Prove that (2√2)/3 is irrational. 

Let us consider RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics to be rational
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics where a & b are integers (b≠0)
Rearranging we get
√2 = 3a/2b
The R.H.S of the above expression is a rational number since it can be expressed as a numerator by a denominator
Let L.H.S = P/q where p and q are integers (q≠0)
⇒ √2 = P/q
⇒ q√2 = p
Squaring both sides we get
2q2 = p2…Equation 1
Since 2 divides p2 so it must also divide p
so p is a multiple of 2
let p = 2k where k is an integer
Putting in Equation 1 the value of p we get
2q2 = 4k2
⇒ q2 = 2k2
Since 2 divides q2 so it must also divide q
so q is a multiple of 2
But this contradicts our previously assumed data since we had considered p & q has been resolved in their simplest form and they shouldn't have any common factors.
So √2 is irrational and hence
(2√2)/3 is also irrational
Hence Proved.


Q.19. What number must be added to each of the numbers 5, 9, 17, 27 to make the new numbers in proportion?

Let the number added to each of the numbers to make them in proportion be x
When any four numbers (a, b, c, d)are in proportion then a/b = c/d
Applying the above equation for our problem we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ (5 + x)(27 + x) = (17 + x)(9 + x)
⇒ 135 + 32x + x2 = 153 + 26x + x2
⇒ 6x = 18
The number added should be 3.


Q.20. The sum of two numbers is 18 and the sum of their reciprocals is 1/4. Find the numbers.

Let the two numbers be x & Y
x + y = 18 (Given) …Equation 1
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics (Given) …Equation 2
Solving Equation 2 We get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Putting the value from Equation 1 we get
⇒ xy = 72
⇒ y = 72/x…Equation 3
Putting the value of Equation 3 in Equation 1 We get
⇒ x + (72/x) = 18
⇒ x2 + 72 = 18x
⇒ x2 - 18x + 72 = 0
⇒ (x-6)2 = 0
⇒ x = 6
Putting the value of x in Equation 1 we get y = 12
The two numbers are 6 & 12.


Q.21. If α, β are the zeros of the polynomial (x2 - x - 12), then form a quadratic equation whose zeros are 2α and 2β.

Given Equation : x2 - x - 12 = 0
which is of the form ax2 + bx + c = 0 (General Form)
The product of the roots of the general form of equation = c/a
Sum of Roots of the general equation = -(b/a)
So α + β = - (b/a)
⇒ α + β = 1
⇒ 2(α + β) = 2 ….Equation 1
Similarly
α×β = -12
⇒ 2α×2β = -48 …Equation 2
The new equation will be formed by combining the results of Equation 1 & 2
The New Polynomial Formed from the new roots is x2 -2x-48.


Q.22. Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2θ + cot2θ.

Given L.H.S. = (sin θ + cosec θ)2 + (cos θ + sec θ)2
We know
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ sin2 θ + cosec2 θ + 2 + cos2 θ + sec2 θ + 2
Also From the Trigonometrical identities
sin2θ + cos2θ = 1
cosec2 θ = 1 + cot2 θ
sec2 θ = 1 + tan2 θ
⇒ 1 + 1 + cot2 θ + 2 + 1 + tan2 θ + 2
⇒ 7 + cot2 θ + tan2 θ
So, L.H.S = R.H.S
Hence Proved.


Q.23. If sec θ + tan θ = m, show that RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics   = sin θ.

Given sec θ + tan θ = m
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
So, we can write
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Squaring both sides we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since cos2 θ = 1- sin2 θ
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Applying Componendo & Dividendo i.e.
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
is equivalent to RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Hence Proved.


Q.24. In a trapezium ABCD, O is the point of intersection of AC and BD, AB|| CD and AB = 2 x CD. If area of ΔAOB = 84 cm2, find the area of ΔCOD.
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given :
AB|| CD
AB = 2 x CD
⇒ AB/CD = 2
∠AOB = ∠COD (Vertically Opposite angles)
∠DCO = ∠OAB (Alternate Angles)
So ΔAOB & ΔDOC are similar by the A.A. (Angle Angle) axiom of Similarity
Since both the triangles are similar so according to the Area –Length relations of similar triangle we can write
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Area of ∆DOC = 21cm2.


Q.25. In the given figure, AB ⊥ BC, GF ⊥ BC and DE ⊥ AC. Prove that ΔADE ~ Δ GCF.
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given:
AB ⊥ BC
GF ⊥ BC
DE ⊥ AC
Since AB ⊥ BC so ∠DAE & ∠GCF are complementary angles i.e.
∠DAE + ∠GCF = 90° ….Equation 1
Similarly since GF ⊥ BC so ∠CFG & ∠GCF are complementary angles i.e.
∠CGF + ∠GCF = 90° ….Equation 2
Combining Equation 1 & 2 We can say that
∠CGF = ∠DAE
Also ∠CFG = ∠DEA (Perpendicular Angles)
So ΔCGF is similar to ΔADE By A.A. (Angle Angle)axiom of similarity
Hence Proved.


Q.26. Find the mean of the following frequency distribution, using step deviation method:
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
h (Represents the class width) = 10
a (Assumed mean) = 25
So Mean according to Step Deviation method:
Mean = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Mean = 25


Q.27. The mean of the following frequency distribution is 78. Find the value of p.
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Mean = 78 (Given)
According to the direct method
Mean = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ 2886 + 78p = 2665 + 95p
⇒ 17p = 221
Value of p is 13.


Q.28. Find the median of the following data:
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Total frequency(n) = 30
n/2 = 15
15 lies in the interval 55-60
so l (lower limit) = 55
cf(Cumulative frequency of the preceding class of median class) = 13
f (frequency of median class) = 6
h (class size) = 5
Median = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Median = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Median = 56.67Kg.


Q.29. If two zeroes of the polynomial p(x) = 2x4 + 7x3 - 19x2- 14x + 30 are √2 and - √2 then find the other two zeroes.

Given: p(x) = 2x4 + 7x3 - 19x2- 14x + 30
Since x = √2 & - √2 is a solution so
x- √2 & x + √2 are two factors of p(x)
Multiplying the two factors we get x2-2 …Equation 1
which is also a factor of p(x)
To get the other two factors we need to perform long division
On performing long division we will get
2x2 + 7x -15 …Equation 2
Equation 2 is also a factor of p(x)
To find the other two zeroes of the polynomial we need to solve Equation 2
We use the method of factorization for solving Equation 2
2x2 + 7x -15 = 0
⇒ 2x2 + 10x -3x -15 = 0
⇒ 2x(x + 5) -3(x + 5) = 0
⇒ (2x-3)(x + 5) = 0
The two roots are 3/2 and -5.


Q.30. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of an equilateral triangle described on one of its diagonals.

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Let us assume BFEC is a square , ΔABF is an equilateral triangle described on the side of the square & Δ CFD is an equilateral triangle describes on diagonal of the square
Now since ΔABF & Δ CFD are equilateral so they are similar
Let side CE = a,
So EF = a
CF2 = a2 + a2
CF2 = 2a2
Since both the triangles are similar so according to the Area –Length relations of similar triangle we can write
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
So Area Of Δ CFD = 2 ΔABF
Hence Proved.


Q.31. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Let us assume ΔABC & ΔPQR are similar
Area of ΔABC = 0.5 ×AD ×BC
Area of ΔPQR = 0.5 ×PS ×QR
Now since the two triangles are similar so the length of sides and perpendiculars will also be in proportion
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics …Equation 1
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics …Equation 2
From Equation 1 We get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Putting in Equation 2 we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
So we can see ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides
Hence Proved.


Q.32. Prove that: RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given: L.H.S. = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since we know RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
So L.H.S.
=RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics=RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Multiplying Numerator & Denominator with sin θ - (1 - cos θ) we get
L.H.S.

=RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
= RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since sin2 θ + cos2 θ = 1
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Taking 2 common out of numerator and denominator
= RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
=RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
= RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
= RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
L.H.S. = R.H.S.
Hence Proved.


Q.33. Evaluate: RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given: RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics …Equation 1
We know
sec θ = cosec (900 – θ)
tan θ = cot (900 – θ)
sin θ = cos (900 – θ)
Using the above three relations in Equation 1 we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
We also know
sin2 θ + cos2 θ = 1
⇒ sin2 55 + cos2 55 = 1
And, RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ 2/√3
2/√3


Q.34. If sec θ + tan θ = m, prove that RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given sec θ + tan θ = m
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 MathematicsSo we can write
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Squaring both sides we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since cos2 θ = 1- sin2 θ
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Applying Componendo & Dividendo i.e.RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
is equivalent to RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Hence Proved.


Q.35. Draw the graph of the following equations: 3x + y- 11 = 0 and x-y- 1 = 0.
Shade the region bounded by these lines and the y-axis.

Given: The equations 3x + y- 11 = 0 and x-y- 1 = 0.
To find: the region bounded by these lines and the y-axis.
For 3x + y - 11 = 0
y = 11 - 3x
Now for x = 0
y = 11 - 3(0)
y = 11
For x = 3
y = 11 - 3(3)
y = 11 - 9
y = 2
Table for equation 3x + y -11 = 0 is
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Plot the points (0,11),(3,2)
For x-y- 1 = 0
y = x - 1
Now for x = 0
y = 0 - 1
y = -1
For x = 3
y = 3 - 1
y = 2
Table for equation x-y- 1 = 0 is
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Plot the points (0,-1),(3,2)
The graph is shown below:
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics


Q.36. The table given below shows the frequency distribution of the scores obtained by 200 candidates in a BCA entrance examination:
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Draw cumulative frequency curve using 'less than series'.

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics


Q.37. For what value of k will the following pair of linear equations have infinitely many solutions?
2x - 3y = 7
(k + 1)x + (1 - 2k)y = (5k - 4)

Given:
Equation 1: 2x - 3y = 7
Equation 2: (k + 1)x + (1 - 2k)y = (5k - 4)
Both the equations are in the form of :
a1x + b1y = c1 & a2x + b2y = c2 where
For the system of linear equations to have infinitely many solutions, we must have
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics ………(i)
According to the problem:
a1 = 2
a2 = k + 1
b1 = -3
b2 = 1-2k
c1 = 7
c2 = 5k-4
Putting the above values in equation (i) we get:
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ 2(1-2k) = -3(k + 1)
⇒ 2-4k = -3k-3
⇒ k = 5
The value of k for which the system of equations has infinitely many solutions is k = 5


Q.38. Prove that: (sin θ – cosec θ)(cos θ – sec θ) = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

To Prove: (sinRS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics - cosecRS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics)(cosRS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics- secRS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics) = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
L.H.S. = (sin θ –cosec θ)(cos θ- sec θ)
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since sin2θ + cos2θ = 1 , So
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
After Cancellation we get
L.H.S. = sin θ cos θ
Dividing the numerator and denominator with cos θ we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
We know RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since sec2θ = 1 + tan2θ
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Dividing The Numerator and denominator by tan θ we get
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Since RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics = R.H.S
Since L.H.S. = R.H.S
Hence Proved.


Q.39. ΔABC is an isosceles triangle with AC = BC. If AB2 = 2AC2, prove that ΔABC is a right triangle.

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

Given:
AC = BC
AB2 = 2AC2 …(Equation 1)
Equation 1 can be rewritten as
AB2 = AC2 + AC2
Since AC = BC we can write
AB2 = AC2 + BC2 …Equation 2
Equation 2 represents the Pythagoras theorem which states that
Hypotenuse2 = Base2 + Perpendicular2
Since Pythagoras theorem is valid only for right-angled triangle so
So RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 MathematicsABC is a right angled triangle right angled at C
Hence Proved.


Q.40. The table given below shows the daily expenditure on food of 30 households in a locality:
RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Find the mean and median of daily expenditure on food.

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
According to the direct method
Mean = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
⇒ Mean = 6150/30
⇒ Mean = 205
Total frequency(n) = 30
n/2 = 15
15 lies in the interval 200-250
so l (lower limit) = 200
cf(Cumulative frequency of the preceding class 200-250) = 13
f (frequency of median class) = 12
h (class size) = 50
Median = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Median = RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics
Median = 208.33

The document RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics is a part of the Class 10 Course RS Aggarwal Solutions for Class 10 Mathematics.
All you need of Class 10 at this link: Class 10
53 docs|15 tests

Top Courses for Class 10

Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

video lectures

,

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

,

Important questions

,

shortcuts and tricks

,

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

,

ppt

,

Viva Questions

,

Sample Paper

,

Exam

,

practice quizzes

,

Free

,

mock tests for examination

,

Summary

,

RS Aggarwal Solutions: Summative Assessment- 2 | RS Aggarwal Solutions for Class 10 Mathematics

,

study material

,

Previous Year Questions with Solutions

,

Objective type Questions

,

MCQs

,

past year papers

,

Semester Notes

,

Extra Questions

,

pdf

;