Finding the Response of Series RL Circuit
Consider the following series RL circuit diagram.
In the above circuit, the switch was kept open up to t = 0 and it was closed at t = 0. So, the AC voltage source having a peak voltage of V_{m} volts is not connected to the series RL circuit up to this instant. Therefore, there is no initial current flows through the inductor.
The circuit diagram, when the switch is in closed position, is shown in the following figure.
Now, the current i(t) flows in the entire circuit, since the AC voltage source having a peak voltage of V_{m} volts is connected to the series RL circuit.
We know that the current i(t) flowing through the above circuit will have two terms, one that represents the transient part and other term represents the steady state.
Mathematically, it can be represented as
i(t) = i_{Tr}(t)+i_{ss}(t) Equation 1
Where,
In the previous chapter, we got the transient response of the current flowing through the series RL circuit. It is in the form of
Substitute in Equation 1.
Calculation of Steady State Current
If a sinusoidal signal is applied as an input to a Linear electric circuit, then it produces a steady state output, which is also a sinusoidal signal. Both the input and output sinusoidal signals will be having the same frequency, but different amplitudes and phase angles.
We can calculate the steady state response of an electric circuit, when it is excited by a sinusoidal voltage source using Laplace Transform approach.
The sdomain circuit diagram, when the switch is in closed position, is shown in the following figure.
In the above circuit, all the quantities and parameters are represented in sdomain. These are the Laplace transforms of timedomain quantities and parameters.
The Transfer function of the above circuit is
Substitute s = jω in the above equation.
Magnitude of H(jω) is
Phase angle of H(jω) is
We will get the steady state current i_{ss}(t) by doing the following two steps −
The steady state current i_{ss}(t) will be
Substitute the value of i_{ss}(t) in Equation 2.
We know that there is no initial current in the circuit. Hence, substitute t = 0 & i(t) = 0 in Equation 3 in order to find the value of constant, K.
Substitute the value of K in Equation 3.
Equation 4 represents the current flowing through the series RL circuit, when it is excited by a sinusoidal voltage source. It is having two terms. The first and second terms represent the transient response and steady state response of the current respectively.
We can neglect the first term of Equation 4 because its value will be very much less than one. So, the resultant current flowing through the circuit will be
It contains only the steady state term. Hence, we can find only the steady state response of AC circuits and neglect transient response of it.
Use Code STAYHOME200 and get INR 200 additional OFF

Use Coupon Code 
23 videos21 docs27 tests
