The document Notes | EduRev is a part of the JEE Course JEE Revision Notes.

All you need of JEE at this link: JEE

- Let a, b and c form an H.P. Then 1/a, 1/b and 1/c form an A.P.
- If a, b and c are in H.P. then 2/b = 1/a + 1/c, which can be simplified as b = 2ac/(a+c)
- If ‘a’ and ‘b’ are two non-zero numbers then the sequence a, H, b is a H.P.
- The n numbers H
_{1}, H_{2}, ……,H_{n}are said to be harmonic means between a and b, if a, H_{1}, H_{2}……, H_{n}, b are in H.P. i.e. if 1/a, 1/H_{1}, 1/H_{2}, ..., 1/H_{n}, 1/b are in A.P. Let d be the common difference of the A.P., Then 1/b = 1/a + (n+1) d ⇒ d = a–b/(n+1)ab.

Thus 1/H_{1}= 1/a + a–b/(n+1)ab,

1/H_{2}= 1/a + 2(a–n)/(n+1)ab,

……….. ……….

1/H_{n}= 1/a + n(a–b)/(n+1)ab. - If x
_{1}, x_{2}, … x_{n }are n non-zero numbers, then the harmonic mean ‘H’ of these numbers is given by 1/H = 1/n (1/x_{1}+ 1/ x_{2}+ ……. +1/ x_{n})

- As the nth term of an A.P is given by an = a + (n-1)d, So the nth term of an H.P is given by 1/ [a + (n -1) d].
- If we have a set of weights w
_{1}, w_{2}, …. , w_{n}associated with the set of values x_{1}, x_{2}, …. , x_{n}, then the weighted harmonic mean is defined - Questions on Harmonic Progression are generally solved by first converting them into those of Arithmetic Progression.
- If ‘a’ and ‘b’ are two positive real numbers then A.M x H.M = G.
- The relation between the three means is defined as A.M > G.M > H.M
- If we need to find three numbers in a H.P. then they should be assumed as 1/a–d, 1/a, 1/a+d
- Four convenient numbers in H.P. are 1/a–3d, 1/a–d, 1/a+d, 1/a+3d
- Five convenient numbers in H.P. are 1/a–2d, 1/a–d, 1/a, 1/a+d, 1/a+2d

Offer running on EduRev: __Apply code STAYHOME200__ to get INR 200 off on our premium plan EduRev Infinity!

233 docs