Notes | EduRev

JEE Main Mock Test Series 2020 & Previous Year Papers

Created by: Learners Habitat

JEE : Notes | EduRev

The document Notes | EduRev is a part of the JEE Course JEE Main Mock Test Series 2020 & Previous Year Papers.
All you need of JEE at this link: JEE
  • In order to solve a quadratic equation of the form ax2 + bx + c, we first need to calculate the discriminant with the help of the formula D = b2 – 4ac.
  • The solution of the quadratic equation ax2 + bx + c= 0 is given by x = [-b ± √ b2 – 4ac] / 2a
  • If α and β are the roots of the quadratic equation ax2 + bx + c = 0, then we have the following results for the sum and product of roots:
    α + β = -b/a
    α.β = c/a
    α – β = √D/a
  • It is not possible for a quadratic equation to have three different roots and if in any case it happens, then the equation becomes an identity.
  • Nature of Roots:
    Consider an equation ax+ bx + c = 0, where a, b and c ∈ R and a ≠ 0, then we have the following cases:
    1. D > 0 iff the roots are real and distinct i.e. the roots are unequal
    2. D = 0 iff the roots are real and coincident i.e. equal
    3. D < 0 iffthe roots are imaginary
    4. The imaginary roots always occur in pairs i.e. if a+ib is one root of a quadratic equation, then the other root must be the conjugate i.e. a-ib, where a, b ∈ R and i = √-1.
    Consider an equation ax2 + bx + c = 0, where a, b and c ∈Q and a ≠ 0, then
    1. If D > 0 and is also a perfect square then the roots are rational and unequal.
    2. If α = p + √q is a root of the equation, where ‘p’ is rational and √q is a surd, then the other root must be the conjugate of it i.e. β = p - √q and vice versa.
  • If the roots of the quadratic equation are known, then the quadratic equation may be constructed with the help of the formula
    x2 – (Sum of roots)x + (Product of roots) = 0.
    So if α and β are the roots of equation then the quadratic equation is
    x2 – (α + β)x + α β = 0
  • For the quadratic expression y = ax2 + bx + c, where a, b, c ∈ R and a ≠ 0, then the graph between x and y is always a parabola.
    1. If a > 0, then the shape of the parabola is concave upwards
    2. If a < 0, then the shape of the parabola is concave upwards
  • Inequalities of the form P(x)/ Q(x) > 0 can be easily solved by the method of intervals of number line rule.
  • The maximum and minimum values of the expression y = ax+ bx + c occur at the point x = -b/2a depending on whether a > 0 or a< 0.
    1. y ∈[(4ac-b2) / 4a, ∞] if a > 0
    2. If a < 0, then y ∈ [-∞, (4ac-b2) / 4a]
  • The quadratic function of the form f(x, y) = ax2+by2 + 2hxy + 2gx + 2fy + c = 0 can be resolved into two linear factors provided it satisfies the following condition: abc + 2fgh –af– bg2 – ch2 = 0
  • In general, if α12, α3, …… ,αn are the roots of the equation
    f(x) = a0xn +a1xn-1 + a2xn-2 + ……. + an-1x + an, then
    1.Σα1 = - a1/a0
    2.Σ α1α2 = a2/a0
    3.Σ α1α2α3 = - a3/a0
    ………   ……….
    Σ α1α2α……αn= (-1)n an/a0
  • Every equation of nth degree has exactly n roots (n ≥1) and if it has more than n roots then the equation becomes an identity.
  • If there are two real numbers ‘a’ and ‘b’ such that f(a) and f(b) are of opposite signs, then f(x) = 0 must have at least one real root between ‘a’ and ‘b’.
  • Every equation f(x) = 0 of odd degree has at least one real root of a sign opposite to that of its last term.
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Complete Syllabus of JEE

JEE

Dynamic Test

Content Category

Related Searches

Extra Questions

,

Free

,

mock tests for examination

,

Viva Questions

,

ppt

,

Notes | EduRev

,

MCQs

,

Previous Year Questions with Solutions

,

pdf

,

study material

,

Important questions

,

video lectures

,

shortcuts and tricks

,

Semester Notes

,

practice quizzes

,

past year papers

,

Sample Paper

,

Exam

,

Notes | EduRev

,

Objective type Questions

,

Summary

,

Notes | EduRev

;