# Revision Notes - Quadratic Equations Notes | Study Mock Test Series for JEE Main & Advanced 2022 - JEE

## JEE: Revision Notes - Quadratic Equations Notes | Study Mock Test Series for JEE Main & Advanced 2022 - JEE

The document Revision Notes - Quadratic Equations Notes | Study Mock Test Series for JEE Main & Advanced 2022 - JEE is a part of the JEE Course Mock Test Series for JEE Main & Advanced 2022.
All you need of JEE at this link: JEE
• In order to solve a quadratic equation of the form ax2 + bx + c, we first need to calculate the discriminant with the help of the formula D = b2 – 4ac.
• The solution of the quadratic equation ax2 + bx + c= 0 is given by x = [-b ± √ b2 – 4ac] / 2a
• If α and β are the roots of the quadratic equation ax2 + bx + c = 0, then we have the following results for the sum and product of roots:
α + β = -b/a
α.β = c/a
α – β = √D/a
• It is not possible for a quadratic equation to have three different roots and if in any case it happens, then the equation becomes an identity.
• Nature of Roots:
Consider an equation ax+ bx + c = 0, where a, b and c ∈ R and a ≠ 0, then we have the following cases:
1. D > 0 iff the roots are real and distinct i.e. the roots are unequal
2. D = 0 iff the roots are real and coincident i.e. equal
3. D < 0 iffthe roots are imaginary
4. The imaginary roots always occur in pairs i.e. if a+ib is one root of a quadratic equation, then the other root must be the conjugate i.e. a-ib, where a, b ∈ R and i = √-1.
Consider an equation ax2 + bx + c = 0, where a, b and c ∈Q and a ≠ 0, then
1. If D > 0 and is also a perfect square then the roots are rational and unequal.
2. If α = p + √q is a root of the equation, where ‘p’ is rational and √q is a surd, then the other root must be the conjugate of it i.e. β = p - √q and vice versa.
• If the roots of the quadratic equation are known, then the quadratic equation may be constructed with the help of the formula
x2 – (Sum of roots)x + (Product of roots) = 0.
So if α and β are the roots of equation then the quadratic equation is
x2 – (α + β)x + α β = 0
• For the quadratic expression y = ax2 + bx + c, where a, b, c ∈ R and a ≠ 0, then the graph between x and y is always a parabola.
1. If a > 0, then the shape of the parabola is concave upwards
2. If a < 0, then the shape of the parabola is concave upwards
• Inequalities of the form P(x)/ Q(x) > 0 can be easily solved by the method of intervals of number line rule.
• The maximum and minimum values of the expression y = ax+ bx + c occur at the point x = -b/2a depending on whether a > 0 or a< 0.
1. y ∈[(4ac-b2) / 4a, ∞] if a > 0
2. If a < 0, then y ∈ [-∞, (4ac-b2) / 4a]
• The quadratic function of the form f(x, y) = ax2+by2 + 2hxy + 2gx + 2fy + c = 0 can be resolved into two linear factors provided it satisfies the following condition: abc + 2fgh –af– bg2 – ch2 = 0
• In general, if α12, α3, …… ,αn are the roots of the equation
f(x) = a0xn +a1xn-1 + a2xn-2 + ……. + an-1x + an, then
1.Σα1 = - a1/a0
2.Σ α1α2 = a2/a0
3.Σ α1α2α3 = - a3/a0
………   ……….
Σ α1α2α……αn= (-1)n an/a0
• Every equation of nth degree has exactly n roots (n ≥1) and if it has more than n roots then the equation becomes an identity.
• If there are two real numbers ‘a’ and ‘b’ such that f(a) and f(b) are of opposite signs, then f(x) = 0 must have at least one real root between ‘a’ and ‘b’.
• Every equation f(x) = 0 of odd degree has at least one real root of a sign opposite to that of its last term.
The document Revision Notes - Quadratic Equations Notes | Study Mock Test Series for JEE Main & Advanced 2022 - JEE is a part of the JEE Course Mock Test Series for JEE Main & Advanced 2022.
All you need of JEE at this link: JEE
 Use Code STAYHOME200 and get INR 200 additional OFF

## Mock Test Series for JEE Main & Advanced 2022

2 videos|258 docs|160 tests

### Top Courses for JEE

Track your progress, build streaks, highlight & save important lessons and more!

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

;