Q1: It is given that tan(θ1 + θ2) = tan θ1 + tan θ21 - tan θ1 tan θ2, where θ1 and θ2 are acute angles. Calculate θ1 + θ2 when tan θ1 = 12 and tan θ2 = 13.
Sol: tan θ1 = 12 and tan θ2 = 13
∴ tan(θ1 + θ2) = tan θ1 + tan θ21 - tan θ1 tan θ2
= 12 + 131 - 12 × 13
= 3 + 261 - 16
= 56 ÷ 6 - 16
= 56 × 65 = 1
Now, tan (θ1 + θ2) = 1 ⇒ θ1 + θ2 = 45°.
Q2: Prove that: tan2A - tan2B = sin2A - sin2Bcos2A · cos2B
Sol: LHS = tan2A - tan2B = sin2Acos2A - sin2Bcos2B
= cos2B · sin2A - sin2B · cos2Acos2A · cos2B
= sin2A · (1 - sin2B) - sin2B · (1 - sin2A)cos2A · cos2B
= sin2A - sin2A · sin2B - sin2B + sin2A · sin2Bcos2A · cos2B
using tanθ=sinθ/cosθ and cos2θ=1-sin2θ as sin2θ+cos2θ=1
= sin2A- sin2Bcos2A.cos2B = R.H.S
Q3: Prove that: (sin4 θ – cos4 θ +1) cosec2 θ = 2
Sol: L.H.S.
= (sin4 θ – cos4 θ + 1) cosec2 θ
= [(sin2 θ)2 – (cos2 θ)2 + 1] cosec2 θ as [a2-b2=(a-b)(a+b)]
= [(sin2 θ – cos2 θ) (sin2 θ + cos2 θ) + 1] cosec2 θ as [ sin2 θ + cos2 θ = 1]
= [(sin2 θ – cos2 θ) *1 + 1] cosec2 θ
= [sin2 θ – cos2 θ+1] cosec2 θ
= [(sin2 θ + (1 –cos2 θ)] cosec2 θ [ 1 – cos2 θ = sin2 θ]
= [sin2 θ + sin2 θ] cosec2 θ
= 2 sin2 θ . cosec2 θ
= 2 = RHS [∵ sin θ . cosec θ = 1]
Q4: Prove that: sec2 θ + cosec2 θ = sec2 θ · cosec2 θ
Sol: L.H.S. = sec2 θ + cosec2 θ
= 1cos2θ + 1sin2θ
= sin2θ + cos2θcos2θ · sin2θ = 1cos2θ · sin2θ
= 1cos2θ × 1sin2θ
= sec2θ × cosec2θ = R.H.S.
Q5: Prove that: 1sec x − tan x − 1cos x = 1cos x − 1sec x + tan x
Sol: We have:
1sec x − tan x − 1cos x = 1cos x − 1sec x + tan x
Transposing the terms, we get:
1sec x − tan x + 1sec x + tan x = 1cos x + 1cos x = 2cos x
Now, L.H.S:
1sec x − tan x + 1sec x + tan x = sec x + tan x + sec x − tan x(sec x − tan x)(sec x + tan x)
= sec x + sec xsec2 x − tan2 x = 2 sec x1 [∵ sec2 x − tan2 x = 1]
= 2cos x ∴ sec x = 1cos x = R.H.S.
Q6: Show that: cos3θ + sin3θcos θ + sin θ + cos3θ − sin3θcos θ − sin θ = 2
Sol: L.H.S. = cos3θ + sin3θcos θ + sin θ + cos3θ − sin3θcos θ − sin θ
= (cos θ + sin θ)(cos2θ − cos θ sin θ + sin2θ)cos θ + sin θ + (cos θ − sin θ)(cos2θ + cos θ sin θ + sin2θ)cos θ − sin θ
= (cos θ + sin θ)(1 − cos θ sin θ)cos θ + sin θ + (cos θ − sin θ)(1 + cos θ sin θ)cos θ − sin θ
= (1 − cos θ sin θ) + (1 + cos θ sin θ)
= 1 − cos θ sin θ + 1 + cos θ sin θ
= 2 + 0 = 2 = R.H.S.
Q7: Prove that: tan A + tan Bcot A + cot B = tan A × tan B
Sol:
tan A + tan Bcot A + cot B = sin Acos A + sin Bcos Bcos Asin A + cos Bsin B
= sin A cos B + sin B cos Acos A cos B ÷ sin B cos A + sin A cos Bsin A sin B
=sin A sin Bcos A cos B
=sin Acos A × sin Bcos B = tan A × tan B = R.H.S.
Q8: Prove that: tan2A - tan2B = sin² A - sin² Bcos² A cos² B
Sol: L.H.S = sin² Acos² A - sin² Bcos² B
= sin² A cos² B - sin² B cos² Acos² A cos² B
= sin² A (1 - sin² B) - sin² B (1 - sin² A)cos² A cos² B
= sin² A - sin² A sin² B - sin² B + sin² A sin² Bcos² A cos² B
= sin² A - sin² Bcos² A cos² B = R.H.S.
Q9: Prove that: sin6θ + cos6θ + 3sin2θ cos2θ = 1.
Sol: ∵ sin2 θ + cos2θ = 1
∵ (sin2 θ + cos2 θ)3 = (1)3 = 1
⇒ (sin2 θ) 3 + (cos2 θ)3 + 3 sin2 θ . cos2 θ (sin2 θ + cos2 θ) = 1
⇒ sin6 θ + cos6 θ + 3 sin2 θ . cos2θ (1) = 1
⇒ sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ = 1
Q10: Prove that: a2 + b2 = x2 + y2 when a cos θ − b sin θ = x and a sin θ + b cos θ =y.
Sol: R.H.S. = x² + y²
= [a cos θ - b sin θ]² + [a sin θ + b cos θ]²
= a² cos² θ + b² sin² θ - 2ab sin θ cos θ + a² sin² θ + b² cos² θ + 2ab sin θ cos θ
= a² cos² θ + b² sin² θ + a² sin² θ + b² cos² θ
= a² [cos² θ + sin² θ] + b² [sin² θ + cos² θ]
= a² [1] + b² [1] [∵ sin² θ + cos² θ = 1]
= a² + b²
= L.H.S.
Q11: Prove that: √sec θ - 1√sec θ + 1 + √sec θ + 1√sec θ - 1 = 2 cosec θ
Sol:
= √sec θ - 1 + √sec θ + 1√sec θ + 1 × √sec θ - 1
= (√sec θ - 1)(√sec θ - 1) + (√sec θ + 1)(√sec θ + 1)√sec θ + 1 × √sec θ - 1
= (sec θ - 1)² + (sec θ + 1)²√sec θ + 1 × √sec θ - 1
= sec θ - 1 + sec θ + 1√sec² θ - 1²
= 2 sec θ√tan² θ = 2 sec θtan θ
= 2cos θ × cos θsin θ = 2sin θ
= 2 cosec θ = R.H.S.
Q12: Prove that: 1 + cos Asin A + sin A1 + cos A = 2 cosec A.
Sol: L.H.S. = 1 + cos Asin A + sin A1 + cos A
= (1 + cos A)(1 + cos A) + sin A × sin Asin A(1 + cos A)
= (1 + cos A)2 + (sin A)2sin A(1 + cos A)
= 1 + cos2 A + 2 cos A + sin2 Asin A(1 + cos A)
= 1 + (cos2 A + sin2 A) + 2 cos Asin A(1 + cos A)
= 2 + 2 cos Asin A(1 + cos A)
= 2(1 + cos A)sin A(1 + cos A) = 2sin A
= 2 cosec A = R.H.S.
Q13: Prove that: sin θcot θ + cosec θ = 2 + sin θcot θ - cosec θ
Sol: We have:
sin θcot θ + cosec θ = 2 + sin θcot θ - cosec θ
⇒ sin θcot θ + cosec θ - sin θcot θ - cosec θ = 2
L.H.S. = sin θcot θ + cosec θ - sin θcot θ - cosec θ
= sin θ (cot θ - cosec θ) - sin θ (cot θ + cosec θ)(cot θ + cosec θ)(cot θ - cosec θ)
= sin θ cot θ - sin θ cosec θ - sin θ cot θ - sin θ cosec θcot2 θ - cosec2 θ
= -2 sin θ cosec θ-1 | ∵ cot2 θ - cosec2 θ = -1
= 2 × sin θ1 x 1sin θ = 2
= R.H.S.
Q14: Show that: 1 + sec θ - tan θ1 + sec θ + tan θ = 1 - sin θcos θ
Sol: L.H.S. = (1) + sec θ - tan θ1 + sec θ + tan θ
= (sec2 θ - tan2 θ) + sec θ - tan θ1 + sec θ + tan θ ∵ [1 - sec2 θ = tan2 θ]
= (sec θ - tan θ)(sec θ + tan θ) + (sec θ - tan θ)1 + sec θ + tan θ ∵[ a2 - b2 = (a + b)(a - b)]
= (sec θ - tan θ)((sin θ + tan θ) + 1)sec θ + tan θ + 1
= sin θ - tan θsec θ + tan θ = 1cos θ × sin θcos θ
= 1 - sin θcos θ = R.H.S.
Q15: For an acute angle θ, show that: (sin θ − cosec θ) (cos θ − sec θ) = 1tan θ + cot θ.
Sol: L.H.S. = (sin θ − 1sin θ) (cos θ − 1cos θ)
= (sin2 θ − 1)sin θ (cos2 θ − 1)cos θ
= −1(1 − sin2 θ) × (−1)(1 − cos2 θ)sin θ cos θ
= (−cos2 θ) × (−sin2 θ)sin θ × cos θ
= sin θ × cos θ = cos θ × sin θ1
= cos θ × sin θsin θ × cos θ = cos θ × sin θsin2 θ + cos2 θ | ∵ 1 = sin2 θ + cos2 θ
= sin θ × cos θsin θ × cos θ = 1tan θ + cot θ.
= R.H.S.
Q16: Show that: tan A1 + sec A − tan A1 − sec A = 2 cosec A.
Sol: L.H.S. = tan A1 + sec A − tan A1 − sec A
= tan A1 + sec A − tan A1 − sec A = tan A [(1 − sec A) − (1 + sec A)(1 + sec A)(1 − sec A)]
= tan A − 2 sec A(1 + sec A)(1 − sec A) = tan A [−2 sec A1 − tan2 A]
= 2 sec Atan A = 2 1cos A × cos Asin A
= 2sin A = 2 cosec A.
= R.H.S.
Q17: If tan (A + B) = √3 and tan (A − B) = 1, 0° < A + B < 90°; A > B, then find A and B.
Sol: We have: tan (A + B) = √3 (Given)
tan 60° = √3 (From the table)
⇒ A + B = 60° ...(1)
Also, tan (A − B)= 1 [Given]
and cosec 60° = 2 and cos 90° = 0
⇒ A − B = 45 ...(2)
Adding (1) and (2),
2A = 60° + 45° = 105°
⇒ A = 105°2 = 52.5°
From (2), 52.5° − B = 45°
⇒ B = 52.5° − 45° = 7.5°
Thus, A = 52.5° and B = 7.5°.
Q18: Simplify: sin³θ + cos³θsinθ + cosθ + sinθ cosθ
Sol: We have:
sin³θ + cos³θsinθ + cosθ + sinθ cosθ
= (sinθ + cosθ)(sin²θ + cos²θ − sinθ cosθ)(sinθ + cosθ) + sinθ cosθ
= (1 − sinθ cosθ) + sinθ cosθ
[using a³ + b³ = (a + b)(a² + b² − ab)]
= (1 − sinθ cosθ) + sinθ cosθ
= 1 − sinθ cosθ + sinθ cosθ = 1 − 0 = 1
Q19: If cot θ = 158, then evaluate: (2 + 2 sin θ)(1 − sin θ)(1 + cos θ)(2 − 2 cos θ)
Sol:
(2 + 2 sin θ)(1 − sin θ)(1 + cos θ)(2 − 2 cos θ) = 2(1 + sin θ)(1 − sin θ)(1 + cos θ) 2(1 − cos θ)
= 2(1 − sin² θ)2(1 − cos² θ) = cos² θsin² θ
= cot² θ
Since cot θ = cos θsin θ : cot² θ = 15²8² = 22564
Q20: Using Geometry, find the value of sin 60°.
Sol: Let us consider an equilateral ΔABC and draw AD ⊥ BC.
Since, each angle of an equilateral triangle = 60°
∴∠A = ∠B = ∠C = 60°
Let AB = BC = AC = 2a
In ΔABD and ΔACD, we have:
AB = AC [Given]
∠ADB = ∠ADC = 90° [Construction]
AD = AD [Construction]
⇒ ΔABD ≅ ΔACD
⇒ BD = CD
= 12 BC = 12 × 2a = a
Now, using Pythagoras theorem, in right ΔABD,
AD2 = AB2 − BD2
= (2a)2 − a2
= 4a2 − a2
= 3a2
⇒ AD = √3a
∴ sin 60° = ADAB = √3a2a = √32
Thus, sin 60° = √32
126 videos|457 docs|75 tests
|
1. What is the basic definition of trigonometry? |
2. What are the primary trigonometric ratios? |
3. How can trigonometry be applied in real life? |
4. What is the Pythagorean theorem and how does it relate to trigonometry? |
5. What is the unit circle and why is it important in trigonometry? |
|
Explore Courses for Class 10 exam
|