Download, print and study this document offline |
Page 1 429 . 0 = CB DF ; 571 . 0 = CD DF . (1) b) Calculate fixed end moment due to applied loading. 0 = F AB M ; kN.m 0 = F BA M ; kN.m 0 1 + = F BC M kN.m 0 1 - = F CB M kN.m 0 = F CD M ; . (2) kN.m 0 = F DC M Now the frame is prevented from sidesway by providing a support at C as shown in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let , and be the balanced end moments. Now calculate horizontal reactions at A and D from equations of statics. BA AB M M ' , ' CD M ' DC M ' 3 ' ' 1 BA AB A M M H + = = 3 268 . 7 635 . 3 + - . ) ( 635 . 3 ? - = KN ) ( kN 635 . 3 3 269 . 17 636 . 3 1 ? = - = D H . Page 2 429 . 0 = CB DF ; 571 . 0 = CD DF . (1) b) Calculate fixed end moment due to applied loading. 0 = F AB M ; kN.m 0 = F BA M ; kN.m 0 1 + = F BC M kN.m 0 1 - = F CB M kN.m 0 = F CD M ; . (2) kN.m 0 = F DC M Now the frame is prevented from sidesway by providing a support at C as shown in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let , and be the balanced end moments. Now calculate horizontal reactions at A and D from equations of statics. BA AB M M ' , ' CD M ' DC M ' 3 ' ' 1 BA AB A M M H + = = 3 268 . 7 635 . 3 + - . ) ( 635 . 3 ? - = KN ) ( kN 635 . 3 3 269 . 17 636 . 3 1 ? = - = D H . ) ( kN 10 ) 635 . 3 635 . 3 ( 10 ? - = + - - = R (3) d) Moment-distribution for arbitrary known sidesway ' ? . Since is arbitrary, Choose any convenient value. Let ' ? ' ? = EI 150 Now calculate fixed end beam moments for this arbitrary sidesway. L EI M F AB ? 6 - = ) 3 150 ( 3 6 EI EI - × - = = kN.m 100 kN.m 100 = F BA M kN.m 100 + = = F DC F CD M M (4) Page 3 429 . 0 = CB DF ; 571 . 0 = CD DF . (1) b) Calculate fixed end moment due to applied loading. 0 = F AB M ; kN.m 0 = F BA M ; kN.m 0 1 + = F BC M kN.m 0 1 - = F CB M kN.m 0 = F CD M ; . (2) kN.m 0 = F DC M Now the frame is prevented from sidesway by providing a support at C as shown in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let , and be the balanced end moments. Now calculate horizontal reactions at A and D from equations of statics. BA AB M M ' , ' CD M ' DC M ' 3 ' ' 1 BA AB A M M H + = = 3 268 . 7 635 . 3 + - . ) ( 635 . 3 ? - = KN ) ( kN 635 . 3 3 269 . 17 636 . 3 1 ? = - = D H . ) ( kN 10 ) 635 . 3 635 . 3 ( 10 ? - = + - - = R (3) d) Moment-distribution for arbitrary known sidesway ' ? . Since is arbitrary, Choose any convenient value. Let ' ? ' ? = EI 150 Now calculate fixed end beam moments for this arbitrary sidesway. L EI M F AB ? 6 - = ) 3 150 ( 3 6 EI EI - × - = = kN.m 100 kN.m 100 = F BA M kN.m 100 + = = F DC F CD M M (4) The moment-distribution for this case is shown in Fig 24.4d. Now calculate horizontal reactions and . 2 A H 2 D H = 2 A H ) ( kN 15 . 43 3 48 . 76 98 . 52 ? = + 2 D H = ) ( kN 15 . 43 3 49 . 76 97 . 52 ? = + ) ( kN 30 . 86 ? - = F Page 4 429 . 0 = CB DF ; 571 . 0 = CD DF . (1) b) Calculate fixed end moment due to applied loading. 0 = F AB M ; kN.m 0 = F BA M ; kN.m 0 1 + = F BC M kN.m 0 1 - = F CB M kN.m 0 = F CD M ; . (2) kN.m 0 = F DC M Now the frame is prevented from sidesway by providing a support at C as shown in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let , and be the balanced end moments. Now calculate horizontal reactions at A and D from equations of statics. BA AB M M ' , ' CD M ' DC M ' 3 ' ' 1 BA AB A M M H + = = 3 268 . 7 635 . 3 + - . ) ( 635 . 3 ? - = KN ) ( kN 635 . 3 3 269 . 17 636 . 3 1 ? = - = D H . ) ( kN 10 ) 635 . 3 635 . 3 ( 10 ? - = + - - = R (3) d) Moment-distribution for arbitrary known sidesway ' ? . Since is arbitrary, Choose any convenient value. Let ' ? ' ? = EI 150 Now calculate fixed end beam moments for this arbitrary sidesway. L EI M F AB ? 6 - = ) 3 150 ( 3 6 EI EI - × - = = kN.m 100 kN.m 100 = F BA M kN.m 100 + = = F DC F CD M M (4) The moment-distribution for this case is shown in Fig 24.4d. Now calculate horizontal reactions and . 2 A H 2 D H = 2 A H ) ( kN 15 . 43 3 48 . 76 98 . 52 ? = + 2 D H = ) ( kN 15 . 43 3 49 . 76 97 . 52 ? = + ) ( kN 30 . 86 ? - = F Let be a factor by which the solution of case (ii k i ) needs to be multiplied. Now actual moments in the frame is obtained by superposing the solution ( ) on the solution obtained by multiplying case (ii ii i ) by . Thus cancel out the holding force R such that final result is for the frame without holding force. k kF Thus, . R F k = 1161 . 0 13 . 86 10 = - - = k (5) Now the actual end moments in the frame are, AB AB AB M k M M ' ' ' + = 3.635 0.1161( 76.48) 5.244 kN.m AB M =- + + =+ 7.268 0.1161( 52.98) 1.117 kN.m BA M =- + + =- 7.268 0.1161( 52.98) 1.117 kN.m BC M =+ + - =+ 7.269 0.1161( 52.97) 13.419 kN.m CB M =- + - =- 7.268 0.1161( 52.97) 13.418 kN.m CD M =+ + + =+ 3.636 0.1161( 76.49) 12.517 kN.m DC M =+ + + =+ The actual sway is computed as, EI k 150 1161 . 0 ' × = ? = ? EI 415 . 17 = The joint rotations can be calculated using slope-deflection equations. [ AB B A F AB AB ] L EI M M ? ? ? 3 2 2 - + + = where L AB ? - = ? [] AB A B F BA BA L EI M M ? ? ? 3 2 2 - + + = Page 5 429 . 0 = CB DF ; 571 . 0 = CD DF . (1) b) Calculate fixed end moment due to applied loading. 0 = F AB M ; kN.m 0 = F BA M ; kN.m 0 1 + = F BC M kN.m 0 1 - = F CB M kN.m 0 = F CD M ; . (2) kN.m 0 = F DC M Now the frame is prevented from sidesway by providing a support at C as shown in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let , and be the balanced end moments. Now calculate horizontal reactions at A and D from equations of statics. BA AB M M ' , ' CD M ' DC M ' 3 ' ' 1 BA AB A M M H + = = 3 268 . 7 635 . 3 + - . ) ( 635 . 3 ? - = KN ) ( kN 635 . 3 3 269 . 17 636 . 3 1 ? = - = D H . ) ( kN 10 ) 635 . 3 635 . 3 ( 10 ? - = + - - = R (3) d) Moment-distribution for arbitrary known sidesway ' ? . Since is arbitrary, Choose any convenient value. Let ' ? ' ? = EI 150 Now calculate fixed end beam moments for this arbitrary sidesway. L EI M F AB ? 6 - = ) 3 150 ( 3 6 EI EI - × - = = kN.m 100 kN.m 100 = F BA M kN.m 100 + = = F DC F CD M M (4) The moment-distribution for this case is shown in Fig 24.4d. Now calculate horizontal reactions and . 2 A H 2 D H = 2 A H ) ( kN 15 . 43 3 48 . 76 98 . 52 ? = + 2 D H = ) ( kN 15 . 43 3 49 . 76 97 . 52 ? = + ) ( kN 30 . 86 ? - = F Let be a factor by which the solution of case (ii k i ) needs to be multiplied. Now actual moments in the frame is obtained by superposing the solution ( ) on the solution obtained by multiplying case (ii ii i ) by . Thus cancel out the holding force R such that final result is for the frame without holding force. k kF Thus, . R F k = 1161 . 0 13 . 86 10 = - - = k (5) Now the actual end moments in the frame are, AB AB AB M k M M ' ' ' + = 3.635 0.1161( 76.48) 5.244 kN.m AB M =- + + =+ 7.268 0.1161( 52.98) 1.117 kN.m BA M =- + + =- 7.268 0.1161( 52.98) 1.117 kN.m BC M =+ + - =+ 7.269 0.1161( 52.97) 13.419 kN.m CB M =- + - =- 7.268 0.1161( 52.97) 13.418 kN.m CD M =+ + + =+ 3.636 0.1161( 76.49) 12.517 kN.m DC M =+ + + =+ The actual sway is computed as, EI k 150 1161 . 0 ' × = ? = ? EI 415 . 17 = The joint rotations can be calculated using slope-deflection equations. [ AB B A F AB AB ] L EI M M ? ? ? 3 2 2 - + + = where L AB ? - = ? [] AB A B F BA BA L EI M M ? ? ? 3 2 2 - + + = In the above equation, except A ? and B ? all other quantities are known. Solving for A ? and B ? , EI B A 55 . 9 ; 0 - = = ? ? . The elastic curve is shown in Fig. 21.4e.Read More
34 videos|140 docs|31 tests
|
1. What is the Moment Distribution Method? |
2. How does the Moment Distribution Method handle frames with sidesway? |
3. What are the advantages of using the Moment Distribution Method for frames with sidesway? |
4. Are there any limitations to using the Moment Distribution Method for frames with sidesway? |
5. How can the Moment Distribution Method be applied in practice for frames with sidesway? |
|
Explore Courses for Civil Engineering (CE) exam
|