Download, print and study this document offline |
Page 1 Instructional Objectives After reading this chapter the student will be able to 1. State whether plane frames are restrained against sidesway or not. 2. Able to analyse plane frames restrained against sidesway by slope-deflection equations. 3. Draw bending moment and shear force diagrams for the plane frame. 4. Sketch the deflected shape of the plane frame. 16.1 Introduction In this lesson, slope deflection equations are applied to solve the statically indeterminate frames without sidesway. In frames axial deformations are much smaller than the bending deformations and are neglected in the analysis. With this assumption the frames shown in Fig 16.1 will not sidesway. i.e. the frames will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig 16.1(b) are properly restrained against sidesway. For example in Fig 16.1(a) the joint can’t move to the right or left without support A also moving .This is true also for joint . Frames shown in Fig 16.1 (c) and (d) are not restrained against sidesway. However the frames are symmetrical in geometry and in loading and hence these will not sidesway. In general, frames do not sidesway if D 1) They are restrained against sidesway. 2) The frame geometry and loading is symmetrical Page 2 Instructional Objectives After reading this chapter the student will be able to 1. State whether plane frames are restrained against sidesway or not. 2. Able to analyse plane frames restrained against sidesway by slope-deflection equations. 3. Draw bending moment and shear force diagrams for the plane frame. 4. Sketch the deflected shape of the plane frame. 16.1 Introduction In this lesson, slope deflection equations are applied to solve the statically indeterminate frames without sidesway. In frames axial deformations are much smaller than the bending deformations and are neglected in the analysis. With this assumption the frames shown in Fig 16.1 will not sidesway. i.e. the frames will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig 16.1(b) are properly restrained against sidesway. For example in Fig 16.1(a) the joint can’t move to the right or left without support A also moving .This is true also for joint . Frames shown in Fig 16.1 (c) and (d) are not restrained against sidesway. However the frames are symmetrical in geometry and in loading and hence these will not sidesway. In general, frames do not sidesway if D 1) They are restrained against sidesway. 2) The frame geometry and loading is symmetrical Page 3 Instructional Objectives After reading this chapter the student will be able to 1. State whether plane frames are restrained against sidesway or not. 2. Able to analyse plane frames restrained against sidesway by slope-deflection equations. 3. Draw bending moment and shear force diagrams for the plane frame. 4. Sketch the deflected shape of the plane frame. 16.1 Introduction In this lesson, slope deflection equations are applied to solve the statically indeterminate frames without sidesway. In frames axial deformations are much smaller than the bending deformations and are neglected in the analysis. With this assumption the frames shown in Fig 16.1 will not sidesway. i.e. the frames will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig 16.1(b) are properly restrained against sidesway. For example in Fig 16.1(a) the joint can’t move to the right or left without support A also moving .This is true also for joint . Frames shown in Fig 16.1 (c) and (d) are not restrained against sidesway. However the frames are symmetrical in geometry and in loading and hence these will not sidesway. In general, frames do not sidesway if D 1) They are restrained against sidesway. 2) The frame geometry and loading is symmetrical For the frames shown in Fig 16.1, the angle ? in slope-deflection equation is zero. Hence the analysis of such rigid frames by slope deflection equation essentially follows the same steps as that of continuous beams without support settlements. However, there is a small difference. In the case of continuous beam, at a joint only two members meet. Whereas in the case of rigid frames two or more than two members meet at a joint. At joint in the frame shown in Fig 16.1(d) three members meet. Now consider the free body diagram of joint C as shown in fig 16.2 .The equilibrium equation at joint C is C ? = 0 C M ? 0 = + + CD CE CB M M M Page 4 Instructional Objectives After reading this chapter the student will be able to 1. State whether plane frames are restrained against sidesway or not. 2. Able to analyse plane frames restrained against sidesway by slope-deflection equations. 3. Draw bending moment and shear force diagrams for the plane frame. 4. Sketch the deflected shape of the plane frame. 16.1 Introduction In this lesson, slope deflection equations are applied to solve the statically indeterminate frames without sidesway. In frames axial deformations are much smaller than the bending deformations and are neglected in the analysis. With this assumption the frames shown in Fig 16.1 will not sidesway. i.e. the frames will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig 16.1(b) are properly restrained against sidesway. For example in Fig 16.1(a) the joint can’t move to the right or left without support A also moving .This is true also for joint . Frames shown in Fig 16.1 (c) and (d) are not restrained against sidesway. However the frames are symmetrical in geometry and in loading and hence these will not sidesway. In general, frames do not sidesway if D 1) They are restrained against sidesway. 2) The frame geometry and loading is symmetrical For the frames shown in Fig 16.1, the angle ? in slope-deflection equation is zero. Hence the analysis of such rigid frames by slope deflection equation essentially follows the same steps as that of continuous beams without support settlements. However, there is a small difference. In the case of continuous beam, at a joint only two members meet. Whereas in the case of rigid frames two or more than two members meet at a joint. At joint in the frame shown in Fig 16.1(d) three members meet. Now consider the free body diagram of joint C as shown in fig 16.2 .The equilibrium equation at joint C is C ? = 0 C M ? 0 = + + CD CE CB M M M At each joint there is only one unknown as all the ends of members meeting at a joint rotate by the same amount. One would write as many equilibrium equations as the no of unknowns, and solving these equations joint rotations are evaluated. Substituting joint rotations in the slope–deflection equations member end moments are calculated. The whole procedure is illustrated by few examples. Frames undergoing sidesway will be considered in next lesson. Example 16.1 Analyse the rigid frame shown in Fig 16.3 (a). Assume EI to be constant for all the members. Draw bending moment diagram and also sketch the elastic curve. Solution In this problem only one rotation needs to be determined i. e. . B ? Thus the required equations to evaluate B ? is obtained by considering the equilibrium of joint B . The moment in the cantilever portion is known. Hence this moment is applied on frame as shown in Fig 16.3 (b). Now, calculate the fixed-end moments by fixing the support B (vide Fig 16.3 c). Thus Page 5 Instructional Objectives After reading this chapter the student will be able to 1. State whether plane frames are restrained against sidesway or not. 2. Able to analyse plane frames restrained against sidesway by slope-deflection equations. 3. Draw bending moment and shear force diagrams for the plane frame. 4. Sketch the deflected shape of the plane frame. 16.1 Introduction In this lesson, slope deflection equations are applied to solve the statically indeterminate frames without sidesway. In frames axial deformations are much smaller than the bending deformations and are neglected in the analysis. With this assumption the frames shown in Fig 16.1 will not sidesway. i.e. the frames will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig 16.1(b) are properly restrained against sidesway. For example in Fig 16.1(a) the joint can’t move to the right or left without support A also moving .This is true also for joint . Frames shown in Fig 16.1 (c) and (d) are not restrained against sidesway. However the frames are symmetrical in geometry and in loading and hence these will not sidesway. In general, frames do not sidesway if D 1) They are restrained against sidesway. 2) The frame geometry and loading is symmetrical For the frames shown in Fig 16.1, the angle ? in slope-deflection equation is zero. Hence the analysis of such rigid frames by slope deflection equation essentially follows the same steps as that of continuous beams without support settlements. However, there is a small difference. In the case of continuous beam, at a joint only two members meet. Whereas in the case of rigid frames two or more than two members meet at a joint. At joint in the frame shown in Fig 16.1(d) three members meet. Now consider the free body diagram of joint C as shown in fig 16.2 .The equilibrium equation at joint C is C ? = 0 C M ? 0 = + + CD CE CB M M M At each joint there is only one unknown as all the ends of members meeting at a joint rotate by the same amount. One would write as many equilibrium equations as the no of unknowns, and solving these equations joint rotations are evaluated. Substituting joint rotations in the slope–deflection equations member end moments are calculated. The whole procedure is illustrated by few examples. Frames undergoing sidesway will be considered in next lesson. Example 16.1 Analyse the rigid frame shown in Fig 16.3 (a). Assume EI to be constant for all the members. Draw bending moment diagram and also sketch the elastic curve. Solution In this problem only one rotation needs to be determined i. e. . B ? Thus the required equations to evaluate B ? is obtained by considering the equilibrium of joint B . The moment in the cantilever portion is known. Hence this moment is applied on frame as shown in Fig 16.3 (b). Now, calculate the fixed-end moments by fixing the support B (vide Fig 16.3 c). ThusRead More
34 videos|140 docs|31 tests
|
1. What is the slope deflection method in civil engineering? |
2. How does the slope deflection method handle frames without sidesway? |
3. What are the main steps involved in the slope deflection method for frames without sidesway? |
4. What are the assumptions made in the slope deflection method for frames without sidesway? |
5. What are the advantages of using the slope deflection method for frames without sidesway? |
|
Explore Courses for Civil Engineering (CE) exam
|