Page 1
curve " AB rotates by an angle
AB
? , rotates by " "C B
BC
? and rotates by DC
CD
? as shown in figure. Due to symmetry,
AB CD
? ? = . From the geometry of the
figure,
AB AB
AB
L L
BB
1
" ?
- = = ?
But
a cos
1
?
= ?
Thus,
5 cos
?
- =
?
- =
a
?
AB
AB
L
5
?
- =
CD
?
5
tan
2
tan 2
2
2
?
= ? =
?
=
?
= a
a
?
BC
(1)
We have three independent unknowns for this problem
C B
? ? , and . The ends ?
A and are fixed. Hence, D . 0 = =
D A
? ? Fixed end moments are,
. 0 ; 0 ; . 50 . 2 ; . 50 . 2 ; 0 ; 0 = = - = + = = =
F
DC
F
CD
F
CB
F
BC
F
BA
F
AB
M M m kN M m kN M M M
Now, writing the slope-deflection equations for the six beam end moments,
[]
AB A AB
I E
M ? ? 3
1 . 5
) 2 ( 2
- =
? + = EI EI M
B AB
471 . 0 784 . 0 ?
? + = EI EI M
B BA
471 . 0 568 . 1 ?
? - + + = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? - + + - = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? + = EI EI M
C CD
471 . 0 568 . 1 ?
? + = EI EI M
C DC
471 . 0 784 . 0 ? (2)
Now, considering the joint equilibrium of B andC , yields
Page 2
curve " AB rotates by an angle
AB
? , rotates by " "C B
BC
? and rotates by DC
CD
? as shown in figure. Due to symmetry,
AB CD
? ? = . From the geometry of the
figure,
AB AB
AB
L L
BB
1
" ?
- = = ?
But
a cos
1
?
= ?
Thus,
5 cos
?
- =
?
- =
a
?
AB
AB
L
5
?
- =
CD
?
5
tan
2
tan 2
2
2
?
= ? =
?
=
?
= a
a
?
BC
(1)
We have three independent unknowns for this problem
C B
? ? , and . The ends ?
A and are fixed. Hence, D . 0 = =
D A
? ? Fixed end moments are,
. 0 ; 0 ; . 50 . 2 ; . 50 . 2 ; 0 ; 0 = = - = + = = =
F
DC
F
CD
F
CB
F
BC
F
BA
F
AB
M M m kN M m kN M M M
Now, writing the slope-deflection equations for the six beam end moments,
[]
AB A AB
I E
M ? ? 3
1 . 5
) 2 ( 2
- =
? + = EI EI M
B AB
471 . 0 784 . 0 ?
? + = EI EI M
B BA
471 . 0 568 . 1 ?
? - + + = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? - + + - = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? + = EI EI M
C CD
471 . 0 568 . 1 ?
? + = EI EI M
C DC
471 . 0 784 . 0 ? (2)
Now, considering the joint equilibrium of B andC , yields
0 0 = + ? =
?
BC
BA B
M M M
5 . 2 129 . 0 568 . 3 - = ? - + EI EI EI
C B
? ? (3)
0 0 = + ? =
?
CD
CB C
M M M
5 . 2 129 . 0 568 . 3 = ? - + EI EI EI
B C
? ? (4)
Shear equation for
Column AB
0 ) 1 ( 5
1 1
= + - - V M M H
BA AB
(5)
Column CD
0 ) 1 ( 5
2 2
= + - - V M M H
DC CD
(6)
Beam BC
0 10 2 0
1
= - - - =
?
CB BC C
M M V M (7)
Page 3
curve " AB rotates by an angle
AB
? , rotates by " "C B
BC
? and rotates by DC
CD
? as shown in figure. Due to symmetry,
AB CD
? ? = . From the geometry of the
figure,
AB AB
AB
L L
BB
1
" ?
- = = ?
But
a cos
1
?
= ?
Thus,
5 cos
?
- =
?
- =
a
?
AB
AB
L
5
?
- =
CD
?
5
tan
2
tan 2
2
2
?
= ? =
?
=
?
= a
a
?
BC
(1)
We have three independent unknowns for this problem
C B
? ? , and . The ends ?
A and are fixed. Hence, D . 0 = =
D A
? ? Fixed end moments are,
. 0 ; 0 ; . 50 . 2 ; . 50 . 2 ; 0 ; 0 = = - = + = = =
F
DC
F
CD
F
CB
F
BC
F
BA
F
AB
M M m kN M m kN M M M
Now, writing the slope-deflection equations for the six beam end moments,
[]
AB A AB
I E
M ? ? 3
1 . 5
) 2 ( 2
- =
? + = EI EI M
B AB
471 . 0 784 . 0 ?
? + = EI EI M
B BA
471 . 0 568 . 1 ?
? - + + = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? - + + - = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? + = EI EI M
C CD
471 . 0 568 . 1 ?
? + = EI EI M
C DC
471 . 0 784 . 0 ? (2)
Now, considering the joint equilibrium of B andC , yields
0 0 = + ? =
?
BC
BA B
M M M
5 . 2 129 . 0 568 . 3 - = ? - + EI EI EI
C B
? ? (3)
0 0 = + ? =
?
CD
CB C
M M M
5 . 2 129 . 0 568 . 3 = ? - + EI EI EI
B C
? ? (4)
Shear equation for
Column AB
0 ) 1 ( 5
1 1
= + - - V M M H
BA AB
(5)
Column CD
0 ) 1 ( 5
2 2
= + - - V M M H
DC CD
(6)
Beam BC
0 10 2 0
1
= - - - =
?
CB BC C
M M V M (7)
?
= + = 5 0
2 1
H H F
X
(8)
?
= - - = 0 10 0
2 1
V V F
Y
(9)
From equation (7),
2
10
1
+ +
=
CB BC
M M
V
From equation (8),
2 1
5 H H - =
From equation (9), 10
2
10
10
1 2
-
+ +
= - =
CB BC
M M
V V
Substituting the values of and in equations (5) and (6),
1 1
,H V
2
V
0 2 2 10 60
2
= + + - - -
CB BC BA AB
M M M M H (10)
0 2 2 10 10
2
= + + - - + -
CB BC DC CD
M M M M H (11)
Eliminating in equation (10) and (11),
2
H
25 = - - + + +
CB BC DC CD BA AB
M M M M M M (12)
Substituting the values of in (12) we get the required third
equation. Thus,
DC CD BA AB
M M M M , , ,
+ ? + EI EI
B
471 . 0 784 . 0 ? + ? + EI EI
B
471 . 0 568 . 1 ? + ? + EI EI
C
471 . 0 568 . 1 ?
? + EI EI
C
471 . 0 784 . 0 ? -( ? - + + EI EI EI
C B
6 . 0 2 5 . 2 ? ? )-
( ? - + + - EI EI EI
C B
6 . 0 2 5 . 2 ? ? ) 25 =
Simplifying,
25 084 . 3 648 . 0 648 . 0 = ? + - - EI EI EI
B C
? ? (13)
Solving simultaneously equations (3) (4) and (13), yields
205 . 1 ; 741 . 0 = - =
C B
EI EI ? ? and 204 . 8 = ? EI .
Substituting the values of
C B
EI EI ? ? , and ? EI in the slope-deflection equation
(3), one could calculate beam end moments. Thus,
3.28 kN.m
AB
M =
Page 4
curve " AB rotates by an angle
AB
? , rotates by " "C B
BC
? and rotates by DC
CD
? as shown in figure. Due to symmetry,
AB CD
? ? = . From the geometry of the
figure,
AB AB
AB
L L
BB
1
" ?
- = = ?
But
a cos
1
?
= ?
Thus,
5 cos
?
- =
?
- =
a
?
AB
AB
L
5
?
- =
CD
?
5
tan
2
tan 2
2
2
?
= ? =
?
=
?
= a
a
?
BC
(1)
We have three independent unknowns for this problem
C B
? ? , and . The ends ?
A and are fixed. Hence, D . 0 = =
D A
? ? Fixed end moments are,
. 0 ; 0 ; . 50 . 2 ; . 50 . 2 ; 0 ; 0 = = - = + = = =
F
DC
F
CD
F
CB
F
BC
F
BA
F
AB
M M m kN M m kN M M M
Now, writing the slope-deflection equations for the six beam end moments,
[]
AB A AB
I E
M ? ? 3
1 . 5
) 2 ( 2
- =
? + = EI EI M
B AB
471 . 0 784 . 0 ?
? + = EI EI M
B BA
471 . 0 568 . 1 ?
? - + + = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? - + + - = EI EI EI M
C B BC
6 . 0 2 5 . 2 ? ?
? + = EI EI M
C CD
471 . 0 568 . 1 ?
? + = EI EI M
C DC
471 . 0 784 . 0 ? (2)
Now, considering the joint equilibrium of B andC , yields
0 0 = + ? =
?
BC
BA B
M M M
5 . 2 129 . 0 568 . 3 - = ? - + EI EI EI
C B
? ? (3)
0 0 = + ? =
?
CD
CB C
M M M
5 . 2 129 . 0 568 . 3 = ? - + EI EI EI
B C
? ? (4)
Shear equation for
Column AB
0 ) 1 ( 5
1 1
= + - - V M M H
BA AB
(5)
Column CD
0 ) 1 ( 5
2 2
= + - - V M M H
DC CD
(6)
Beam BC
0 10 2 0
1
= - - - =
?
CB BC C
M M V M (7)
?
= + = 5 0
2 1
H H F
X
(8)
?
= - - = 0 10 0
2 1
V V F
Y
(9)
From equation (7),
2
10
1
+ +
=
CB BC
M M
V
From equation (8),
2 1
5 H H - =
From equation (9), 10
2
10
10
1 2
-
+ +
= - =
CB BC
M M
V V
Substituting the values of and in equations (5) and (6),
1 1
,H V
2
V
0 2 2 10 60
2
= + + - - -
CB BC BA AB
M M M M H (10)
0 2 2 10 10
2
= + + - - + -
CB BC DC CD
M M M M H (11)
Eliminating in equation (10) and (11),
2
H
25 = - - + + +
CB BC DC CD BA AB
M M M M M M (12)
Substituting the values of in (12) we get the required third
equation. Thus,
DC CD BA AB
M M M M , , ,
+ ? + EI EI
B
471 . 0 784 . 0 ? + ? + EI EI
B
471 . 0 568 . 1 ? + ? + EI EI
C
471 . 0 568 . 1 ?
? + EI EI
C
471 . 0 784 . 0 ? -( ? - + + EI EI EI
C B
6 . 0 2 5 . 2 ? ? )-
( ? - + + - EI EI EI
C B
6 . 0 2 5 . 2 ? ? ) 25 =
Simplifying,
25 084 . 3 648 . 0 648 . 0 = ? + - - EI EI EI
B C
? ? (13)
Solving simultaneously equations (3) (4) and (13), yields
205 . 1 ; 741 . 0 = - =
C B
EI EI ? ? and 204 . 8 = ? EI .
Substituting the values of
C B
EI EI ? ? , and ? EI in the slope-deflection equation
(3), one could calculate beam end moments. Thus,
3.28 kN.m
AB
M =
2.70 kN.m
BA
M =
2.70 kN.m
BC
M = -
5.75 kN.m
CB
M = -
5.75 kN.m
CD
M =
4.81 kN.m
DC
M = . (14)
The bending moment diagram for the frame is shown in Fig. 17.5 d.
Summary
In this lesson, slope-deflection equations are derived for the plane frame
undergoing sidesway. Using these equations, plane frames with sidesway are
analysed. The reactions are calculated from static equilibrium equations. A
couple of problems are solved to make things clear. In each numerical example,
the bending moment diagram is drawn and deflected shape is sketched for the
plane frame.
Read More