(i) Sexagesimal or English System: Here 1 right angle = 90 (degrees)
1 = 60’ (minutes)
1’ = 60" (seconds)
(ii) Circular System: Here an angle is measured in radians. One radian corresponds to the angle subtended by an arc of length ’r ’ at the centre of the circle of radius r. It is a constant quantity and does not depend upon the radius of the circle.
(a) Relation between the two systems: Degree = Radian*180 / π
(b) If θ is the angle subtended at the centre of a circle of radius 'r',
by an arc of length 'l' then l / r = θ
Note: l, r are in the same units and θ is always in radians.
Example.1. If the arcs of the same length in two circles subtend angles of 60° and 75° at their centres. Find the ratio of their radii.
Solution. Let r1 and r2 be the radii of the given circles and let their arcs of the same length s subtend angles of 60 and 75 at their centres.
Now,
⇒ 4r1 = 5r2 ⇒ r1 : r2 = 5 : 4
'p' is perpendicular, 'b' is base and 'h' is hypotenuse.
Note : The quantity by which the cosine falls short of unity i.e. 1 - cosθ, is called the versed sine θ of θ and also by which the sine falls short of unity i.e. 1- sinθ is called the coversed sine of θ.
➢ New Definition of T-ratios By using rectangular coordinates the definitions of trigonometric functions can be extended to angles of any size in the following way (see diagram). A point P is taken with coordinates (x, y). The radius vector OP has length r and the angle 0 is taken as the directed angle measured anticlockwise from the x-axis.
The three main trigonometric functions are then defined in terms of r and the coordinates x and y:
(The other function are reciprocals of these)
This can give negative values of the trigonometric functions.
(i) sin θ. cosec θ = 1
(ii) cos θ. sec θ = 1
(iii) tan θ. cot θ = 1
(iv) tan θ = sin θ / cos θ & cot θ = cos θ / sin θ
(v) sin2 θ + cos2 θ = 1 or sin2 θ = 1 - cos2 θ or cos2 θ = 1 - sin2 θ
(vi) sec2 θ - tan2 θ = 1 or sec2 θ = 1 + tan2 θ or tan2 θ = sec2 θ - 1
(vii)
(viii) cosec2 θ - cot2 θ = 1 or cosec2 θ = 1 + cot2 θ or cot2 θ = cosec2 θ - 1
(ix)
(x) Expressing trigonometrical ratio in terms of each other:
Example.2. If sin θ + sin2 θ = 1 , then prove that cos12 θ + 3 cos10 θ + 3 cos8 θ + cos6 θ - 1 = 0
Solution. Given that sin θ = 1 - sin2 θ = cos2 θ
L.H.S. = cos6 θ (cos2 θ + 1)3 - 1= sin3 θ (1 + sin θ )3 - 1= (sin θ + sin2 θ)3 - 1 = 1 - 1 = 0
Example.3. 2(sin6 θ + cos6 θ) - 3 ( sin4 θ + cos4 θ) + 1 is equal to
(a) 0
(b) 1
(c) –2
(d) none of these
Ans. (a)
Solution. 2 [(sin2 θ + cos2 θ )3 - 3 sin2 θ cos2 θ ( sin2 θ + cos2 θ) ] - 3 [(sin2 θ + cos2 θ)]2 - 2sin2 θ cos2 θ] + 1
= 2 [1 – 3 sin2 θ cos2 θ] - 3 [1 - 2 sin2 θ cos2 θ] + 1
= 2 - 6 sin2 θ cos2 θ - 3 + 6 sin2 θ cos2 θ + 1 = 0
(a) sin (2n π + θ) = sin θ, cos (2n π + θ) = cos θ, where n ∈ I
(b)
N.D. → Not Defined
(a) sin nπ = 0 ; cos nπ = (-1)n; tan nπ = 0 where n ∈ I
(b) sin(2n + 1) π / 2 = (-1)n; cos(2n + 1) π / 2 = 0 where n ∈ I
Example.4. If sin θ = -1 / 2 and tan θ = 1 / √3 then θ is equal to:
(a) 30°
(b) 150°
(c) 210°
(d) None of these
Ans. (c)
Solution. Let us first find out θ lying between 0 and 360°.
Since sin θ = -1 / 2 ⇒ θ = 210° or 330° and tan θ = 1 / √3 ⇒ θ = 30° or 210°
Hence, θ = 210° or 7π / 6 is the value satisfying both.
(i) y = sinx
(ii) y = cosx
(iii) y = tanx(iv) y = cotx
(v) y = secx
(vi) y = cosecx
➢ Some More Results
Solved Examples
Example.5. Prove that √3 cosec20° – sec20° = 4.
Solution. L.H.S.
Example.6. Prove that tan70° = cot70° + 2cot40°.
Solution. L.H.S.
= tan70° = tan (20° + 50°)
or tan70° – tan20° tan50° tan70° = tan20° + tan50°
or tan70° = tan70° tan50° tan20° + tan20° + tan50° = 2 tan 50° + tan20°
= cot70° + 2cot40° = R.H.S.
Example.7. If sin2A = λ sin2B, then prove that
Solution. Given sin2A = λ sin2B
Applying componendo & dividendo,
(i) sin (A + B + C) = sinAcosBcosC + sinBcosAcosC + sinCcosAcosB – sinAsinBsinC
= ΣsinA cosB cosC – Πsin A
cosA cosB cosC [tanA + tanB + tanC - tanA tanB tanC]
(ii) cos (A + B + C) = cosA cosB cosC – sinA sinB cosC – sinA cosB sinC – cosA sinB sinC
= Πcos A - Σsin A sin B cos C
= cos A cos B cos C [1 - tan A tan B - tan B tan C - tan C tan A]
(iii) tan (A + B + C) =
(a) Trigonometrical ratios of an angle 2θ in terms of the angle θ :
(i) sin 2θ = 2 sin θ cos θ =
(ii) cos 2θ = cos2θ - sin2θ = 2 cos2θ - 1 = 1 - 2 sin2θ =
(iii) 1 + cos 2θ = 2 cos2 θ
(iv) 1 - cos 2θ = 2 sin2 θ
(v)
(vi)
Example.10. Prove that := tan (60º + A) tan (60º - A)
Solution. R.H.S. = tan(60° + A) tan(60° – A)
(b) Trigonometrical ratios of an angle 3θ in terms of the angle θ :
(i) sin3θ = 3sinθ - 4sin3θ.
(ii) cos3θ = 4cos3θ - 3cosθ.
(iii)
Example.11. Prove that : tanA + tan(60° + A) + tan(120° + A) = 3tan3A
Solution. L.H.S. = tanA + tan(60° + A) + tan(120° + A)
= tanA + tan(60° + A) + tan{180° –(60° – A)}
= tanA + tan(60° + A) – tan(60° – A) [∵ tan(180° - θ) = -tanθ]
Example.12.is equal to
(a)
(b)
(c)
(d)
Ans. (a)
Solution.
Trigonometric Ratios of Some Standard Angles
Example.13. Evaluate sin78 ° – sin66 ° – sin42 ° + sin 6°.
Solution. The expression = (sin78° - sin42°) - (sin66° - sin6°) = 2cos(60°) sin(18°) - 2cos36° . sin30°
If A + B + C = 180°, then
(i) tan A + tan B + tan C = tan A tan B tan C
(ii) cot A cot B + cot B cot C + cot C cot A = 1
(v) sin 2A + sin 2B + sin 2C = 4 sinA sinB sinC
(vi) cos 2A + cos 2B + cos 2C = –1 – 4 cosA cosB cosC
Example.14. In any triangle ABC, sin A – cos B = cos C, then angle B is
(a) π / 2
(b) π / 3
(c) π / 4
(d) π / 6
Ans. (a)
Solution. We have, sin A – cos B = cos C
sin A = cos B + cos C ∵ A + B + C = π
Therefore 2B = π ⇒ B = π / 2
Example.15. If A + B + C = 3π / 2, then cos 2A + cos 2B + cos2C is equal to
(a) 1 – 4cosA cosB cosC
(b) 4 sinA sin B sinC
(c) 1 + 2cosA cosB cosC
(d) 1 – 4 sinA sinB sinC
Ans. (d)
Solution. cos 2A + cos 2B + cos 2C = 2 cos (A + B ) cos (A – B) + cos 2C
=cos (A – B) + cos 2C ∵ A + B + C = 3π / 2
= – 2 sin C cos ( A– B) + 1 – 2 sin2C = 1 – 2 sinC [ cos ( A– B) + sin C)
= 1 – 2 sin C [ cos (A – B) + sin
= 1 – 2 sin C [ cos (A – B) – cos ( A +B ) ]
= 1 – 4 sin A sin B sin C
(i) acosθ + bsinθ will always lie in the interval i.e. the maximum and minimum values are
respectively.
(ii) Minimum value of a2 tan2 θ + b2 cot2 θ = 2ab where a, b > 0where α and β are known angles.(iv)
and α + β = s (constant) then
(a) Maximum value of the expression cos α cos β, cos α + cos β, sin α sin β or sin α + sin β occurs when α = β = a / 2
(b) Minimum value of sec α + sec β, tanα + tanβ, cosec α + cosec β occurs when α = β = a / 2
(v) If A, B, C are the angles of a triangle then the maximum value of
sin A + sin B + sin C and sin A sin B sin C occurs when A = B = C = 60
(vi) In case a quadratic in sin θ & cos θ is given then the maximum or minimum values can be obtained by making a perfect square.
Example.16. Prove that: for all values of θ.
Solution. We have,for all θ.
for all θ.
for all θ.
Example.17. Find the maximum value of
(a) 1
(b) 2
(c) 3
(d) 4
Ans. (d)
Solution. We have
∴ maximum value =
(i) sinθ sin (60° – θ) sin (60° + θ) =
(ii) cosθ. cos (60° - θ) cos (60° + θ) =
(iii) tanθ tan (60° - θ) tan (60° + θ) = tan 3θ
(iv) cot θ cot (60° - θ) cot (60° + θ) = cot 3θ
(v) (a) sin2 θ + sin2 (60° + θ) + sin2 (60° - θ) = 3 / 2
(b) cos2 θ + cos2 (60° + θ) + cos2 (60° - θ) = 3 / 2
(vi) (a) If tan A + tan B + tan C = tan A tan B tan C, then A + B + C = nπ, n ∈ I
(b) If tan A tan B + tan B tan C + tan C tan A = 1, then A + B + C = (2n + 1) π / 2, n ∈ I
(viii) (a) cotA – tanA = 2cot2A
(b) cotA + tanA = 2cosec2A
Example.18. Prove that tanA + 2tan2A + 4tan4A + 8cot8A = cot A.
Solution. 8 cot 8A = cotA - tanA - 2tan2A - 4tan4A
= 2 cot2A - 2tan2A - 4tan4A (using viii (a) in above results)
= 4 cot4A - 4tan4A (using viii (a) in above results)
= 8 cot8A.
Alternate Method:
L.H.S. = tanA + 2tan2A + 4tan4A +
Example.19. Evaluate
Solution.
Example.20. Prove that : (1 + sec2θ)(1 + sec22θ)(1 + sec23θ)....(1 + sec2nθ) = tan2nθ.cotθ.
Solution. L.H.S.
Example.21. Prove that
tanα + 2 tan2α + 22 tan2α + . .. .. . + 2n - 1 tan 2n - 1 α + 2n cot2nα = cot α
Solution. We know tanθ = cotθ - 2 cot 2θ .....(i)
Putting 0 = a, 2α, 22α,.....in (i), we get
tan α = (cot α - 2 cot 2α)
2 (tan 2 α) = 2(cot 2α - 2 cot 22α)
22 (tan 22α) = 22 (cot 22α - 2 cot 23α)
...........................................................
2n - 1 (tan 2n - 1α) = 2n - 1 (cot 2n - 1α - 2 cot 2nα)
Adding,
tan α + 2 tan2α + 22 tan2α +....+ 2n-1 tan 2n-1α = cot a - 2n cot 2nα
∴ tan α + 2 tan2 α + 22 tan2α +....+ 2n-1 tan 2n-1 a + 2n cot 2n a = cot α
Example.22. If A,B,C and D are angles of a quadrilateral andprove that A = B = C = D = π / 2.
Solution.
Since, A + B = 2π - (C + D), the above equation becomes,
This is a quadratic equation inwhich has real roots .
⇒ A = B , C = D .
Similarly A = C, B = D ⇒ A = B = C = D = π / 2
172 videos|503 docs|154 tests
|
1. What are T-ratios and how are they related to trigonometric functions? | ![]() |
2. What are the basic trigonometric identities? | ![]() |
3. How do the signs of trigonometric functions vary in different quadrants? | ![]() |
4. What are allied angles and how are they related to trigonometric functions? | ![]() |
5. What are the domains, ranges, and periodicity of trigonometric functions? | ![]() |