Class 9 Exam  >  Class 9 Notes  >  Mathematics (Maths) Class 9  >  Very Short Question Answer: Number Systems

Class 9 Maths Chapter 1 Question Answers - Number System

Q1: Simplify: (√5 + √2)2.
Ans:
Here, (√5 + √22 = (√52 + 2√5√2 + (√2)2
= 5 + 2√10 + 2
= 7 + 2√10

Q2:How many rational numbers can be found between two distinct rational numbers?
(i) Two
(ii) Ten
(iii) Zero
(iv) Infinite
Ans: (iv) Infinite
Between any two distinct rational numbers, an infinite number of rational numbers can be found. This is because rational numbers are dense on the number line, meaning between any two rational numbers aa and b (a < ba<b), you can always find another rational number by calculating the average:
New rational number = a+b/2 

Q3: Identify a rational number among the following numbers :
2 + √2, 2√2, 0 and π
Ans: 
0 is a rational number.


Q4:  √8 is an
(i) natural number
(ii) rational number
(iii) integer
(iv) irrational number

Ans: (D) 
\sqrt{8}
√8 is an irrational number
Class 9 Maths Chapter 1 Question Answers - Number System


Q5: Find the value of √(3)- 2.
Ans:

Class 9 Maths Chapter 1 Question Answers - Number System

Q6:  Is zero a rational number? Can you write it in the form pq\frac{p}{q}, where pp and q are integers and q0q \neq 0?

Ans: Consider the definition of a rational number. A rational number is the one that can be written in the form pq\frac{p}{q} , where p and q are integers and q0q \neq 0

Zero can be written as

01,02,03,04,05,\frac{0}{1}, \frac{0}{2}, \frac{0}{3}, \frac{0}{4}, \frac{0}{5}, \dots

So, we arrive at the conclusion that 000 can be written in the form pq\frac{p}{q}, where pp is any integer.

Therefore, zero is a rational number.


Q7: A terminating decimal is

(i) a natural number
(ii) a rational number
(iii) a whole number
(iv) an integer.

Ans: (ii) a rational number


Q8: Find 64^{\frac{1}{2}}641/2
Ans:Class 9 Maths Chapter 1 Question Answers - Number System

Q9: Simplify Class 9 Maths Chapter 1 Question Answers - Number System

Ans:Class 9 Maths Chapter 1 Question Answers - Number SystemThe LCM of 3 and 4 is 12.Class 9 Maths Chapter 1 Question Answers - Number SystemClass 9 Maths Chapter 1 Question Answers - Number SystemClass 9 Maths Chapter 1 Question Answers - Number System

Q10: The sum of rational and an irrational number
(i) may be natural
(ii) may be irrational
(iii) is always irrational
(iv) is always rational

Ans: (iii) is always rational
Example: 
Rational number: 33
Irrational number: 2\sqrt{2
Sum: 3+2
The sum 3+23 + \sqrt{2} cannot be expressed as pq\frac{p}{q}, so it is irrational.

The document Class 9 Maths Chapter 1 Question Answers - Number System is a part of the Class 9 Course Mathematics (Maths) Class 9.
All you need of Class 9 at this link: Class 9
44 videos|412 docs|54 tests

Top Courses for Class 9

FAQs on Class 9 Maths Chapter 1 Question Answers - Number System

1. What are the different types of number systems?
Ans. The main types of number systems are binary (base-2), decimal (base-10), octal (base-8), and hexadecimal (base-16). Each system has its own set of digits and is used in various applications, particularly in computing and digital electronics.
2. How do you convert a decimal number to binary?
Ans. To convert a decimal number to binary, divide the number by 2 and record the remainder. Repeat this process with the quotient until it reaches 0. The binary equivalent is the sequence of remainders read in reverse order.
3. What is the importance of number systems in computer science?
Ans. Number systems are crucial in computer science because they define how data is represented and manipulated. Computers use binary to process data, while programmers often use hexadecimal for easier representation of binary values and memory addresses.
4. How do you convert a binary number to decimal?
Ans. To convert a binary number to decimal, multiply each bit by 2 raised to the power of its position (counting from right to left starting at 0) and sum all the results. For example, the binary number 1011 equals 1*(2^3) + 0*(2^2) + 1*(2^1) + 1*(2^0) = 11 in decimal.
5. What are the applications of hexadecimal number system?
Ans. The hexadecimal number system is widely used in programming and computing for representing binary data in a more compact form. It is commonly used in memory address representation, color codes in web design, and assembly language programming.
44 videos|412 docs|54 tests
Download as PDF
Explore Courses for Class 9 exam

Top Courses for Class 9

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Extra Questions

,

shortcuts and tricks

,

Free

,

practice quizzes

,

Summary

,

Viva Questions

,

past year papers

,

Previous Year Questions with Solutions

,

mock tests for examination

,

study material

,

Semester Notes

,

Class 9 Maths Chapter 1 Question Answers - Number System

,

Class 9 Maths Chapter 1 Question Answers - Number System

,

Sample Paper

,

pdf

,

Objective type Questions

,

ppt

,

MCQs

,

Exam

,

Important questions

,

video lectures

,

Class 9 Maths Chapter 1 Question Answers - Number System

;