Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Short Answer Questions: Quadratic Equations

Class 10 Maths Chapter 4 Question Answers - Quadratic Equations

Q1. If the roots of the quadratic equation  ax2 + bx + c = 0 are equal then show that b2 = 4ac.

Sol. ∵ For equal roots, we have
b2 − 4ac =0
∴ b2 = 4ac

Q2. Find the value of ‘k’ for which the quadratic equation kx2 − 5x + k = 0 have real roots.

Sol. Comparing kx2 − 5x + k = 0 with ax2 + bx + c = 0, we have:

a = k
b = − 5
c = k

∴ b2 − 4ac =(− 5)2 − 4 (k) (k)
= 25 − 4k2 

For equal roots, b2 − 4ac = 0
∴ 25 − 4k2 = 0
⇒ 4k2 = 25

⇒ k= 25/4
k = ± √ 254  = ± 52 

Q3. If 2 is a root of the equation x2 + kx + 12 = 0 and the equation x2 + kx + q = 0 has equal roots, find the value of q.

Sol. Since, 2 is a root of x2 + kx + 12 = 0
∴ (2)2 + k(2) + 12 = 0
or 4 + 2k + 12 = 0
⇒ 2k = −16 or  k = − 8
Roots of x2 + kx + q = 0 are equal
∴ k2 − 4(1) (q) = 0  or  k2 − 4q = 0
But k = −8, so (−8)2 = 4q or q = 16

Q4. If − 4 is a root of the quadratic equation x2 + px − 4 = 0 and x2 + px + k = 0 has equal roots, find the value of k.

Sol. ∵ (–4) is a root of x+ px − 4 = 0
∴ (− 4)2 + p (− 4) - 4 = 0
⇒ 16 − 4p − 4 = 0
⇒ 4p = 12 or p = 3
Now, x2 + px + k = 0

⇒ Putting the value of p = 3
⇒ x2 + 3x + k = 0 [∵ p = 3]
Now, a = 1, b = 3 and c = + k
∴ b2 − 4ac = (3)2 − 4 (1) (k)
= 9 − 4k
For equal roots, b2 − 4ac = 0

⇒ 9 − 4k =0 ⇒ 4k = 9

⇒ k = 9/4

Q5. If one root of the quadratic equation 2x2 − 3x + p = 0 is 3, find the other root of the quadratic equation. Also, find the value of p.

Sol. We have: 2x2 − 3x + p = 0 ...(1)
∴ a = 2, b = − 3 and c = p

Since, the sum of the roots = -b/a
 = -(-3)2 = 32
∵ One of the roots = 3
∴ The other root 32 - 3  = 3 - 6 2 -3 2 

Now, substituting x = 3 in (1), we get

2 (3)2 − 3 (3) + p =0
⇒ 18 − 9 + p = 0
⇒ 9 + p = 0
⇒ p  = − 9

Q6. If one of the roots of x2 + px − 4 = 0 is − 4 then find the product of its roots and the value of p.

Sol. If − 4 is a root of the quadratic equation,

x2 + px − 4=0
∴ (− 4)2 + (− 4) (p) − 4 = 0
⇒ 16 − 4p − 4 = 0
⇒ 12 − 4p = 0
⇒ p  = 3

Now, in ax2 + bx + c = 0, the product of the roots = c/a

∴ Product of the roots in x2 +  px − 4= 0 

= -4/1 = -4

Q7. For what value of k, does the given equation have real and equal roots? (k + 1) x2 − 2 (k − 1) x + 1 = 0.

Sol. Comparing the given equation with ax2 + bx + c = 0, we have:

a = k + 1
b = − 2 (k − 1)
c = 1

For equal roots, b2 − 4ac = 0

∴ [− 2 (k − 1)]− 4 (k + 1) (1) = 0
⇒ 4 (k − 1) − 4 (k + 1) = 0
⇒ 4 (k + 1 − 2k) − 4k − 4 = 0
⇒ 4k + 4 − 8k − 4k − 4 = 0
⇒ 4k − 12k = 0
⇒ 4k (k − 3) = 0
⇒ k = 0 or k = 3

Q8. Using quadratic formula, solve the following quadratic equation for x: 

x2 − 2ax + (a2 − b2) = 0

Sol. Comparing x2 − 2ax + (a2 − b2) = 0, with ax2 + bx + c = 0, we have:

 a = 1, b = − 2a, c = a2 − b2

x =  - b ± (√b2 - 4ac)2a

x =  - (-2a)  ± (√(2a)2 - 4(1)(a2- b2))2(1)

x =  2a  ± (√4a2 - 4a+ 4b2)2

x =  2a  ± √ 4b22

x =  2a  ±  2b2

x = a ± b 

x = a + b , a - b

∴ x =( a + b) or x = (a − b)

Q9. If one of the roots of the quadratic equation 2x2 + kx − 6 = 0 is 2, find the value of k. Also, find the other root.

Sol. Given equation:

2x2 + kx − 6= 0
one root = 2
Substituting x = 2 in 2x+ kx − 6 = 0
We have:

2 (2)2 + k (2) − 6= 0
⇒ 8 + 2k − 6= 0
⇒ 2k + 2 = 0  ⇒ k = − 1
∴ 2x2 + kx − 6 = 0  ⇒ 2x2 − x − 6 = 0

Sum of the roots  = -b/a = 1/2
∴ other root =   1 2 - 2 
 - 3 2

Q10. Determine the value of k for which the quadratic equation 4x2 − 4kx + 1 = 0 has equal roots.

Sol. We have:

4x2 − 4kx + 1 = 0
Comparing with ax2 + bx + c = 0,
we have
a = 4, b = − 4k and c = 1
∴ b2 − 4ac =(− 4k)2 − 4 (4k) (1)
= 16k2 − 16

For equal roots

b2 − 4ac = 0

∴ 16k2 − 16 = 0

⇒ 16k2 = 16 ⇒ k2 = 1
⇒ k = ± 1

Q11. For what value of k, does the quadratic equation x2 − kx + 4 = 0 have equal roots?

Sol. Comparing  x2 − kx + 4 = 0 with ax2 + bx + c = 0, we get
a = 1
b = − k
c = 4

∴ b2 − 4ac =(− k)2 − 4 (1) (4) = k2 − 16

For equal roots,

b2 − 4ac =0
⇒ k2 − 16 = 0
⇒ k2 = 16
⇒ k = ±  4

Q12. What is the nature of roots of the quadratic equation 4x2 − 12x + 9 = 0?

Sol. Comparing 4x2 − 12x + 9 = 0 with ax2 + bx + c = 0 we get

a = 4
b = − 12
c = 9

∴ b2 − 4ac =(− 12)2 − 4 (4) (9)
= 144 − 144 = 0

Since b2 − 4ac = 0

∴ The roots are real and equal.

Q13. Write the value of k for which the quadratic equation x2 − kx + 9 = 0 has equal roots.

Sol. Comparing x− kx + 9 = 0 with ax2 + bx + c = 0, we get

a = 1
b = − k
c = 9

∴ b2 − 4ac = (− k)2 − 4 (1) (9)
= k2 − 36

For equal roots, b2 − 4ac = 0
⇒ k2 − 36 = 0  ⇒ k2 = 36
⇒ k = ±  6

Q14. For what value of k are the roots of the quadratic equation 3x2 + 2kx + 27 = 0 real and equal?

Sol. Comparing 3x2 + 2 kx + 27 = 0 with ax2 + bx + c = 0, we have:

a = 3
b = 2k
c = 27

∴ b2 − 4ac = (2k)2 − 4 (3) (27)
= 4k2 − (12 × 27)

For the roots to be real and equal

b2 − 4ac = 0
⇒ 4k2 − (12 × 27) = 0
⇒ 4k2 = 12 × 27

⇒ k2  =  12  x  274

 ⇒k=  81

⇒ k = ± 9

Q15. For what value of k are the roots of the quadratic equation kx2 + 4x + 1 = 0 equal and real?

Sol. Comparing kx2 + 4x + 1 = 0, with ax2 + bx + c = 0, we get

a = k
b = 4
c = 1

∴ b2 − 4ac = (4)− 4 (k) (1)
= 16 − 4k

For equal and real roots, we have

b2 − 4ac =0
⇒ 16 − 4k = 0
⇒ 4k = 16

⇒ k = 16/4 = 4

Q16. For what value of k does (k − 12) x2 + 2 (k − 12) x + 2 = 0 have equal roots?

Sol. Comparing (k − 12) x2 + 2 (k − 12) x + 2 = 0 with ax2 + bx + c = 0, we have:

a = (k − 12)
b = 2 (k − 12)
c = 2

∴ b2 − 4ac = [2 (k − 12)]2 − 4 (k − 12) (2)
= 4 (k − 12)2 − 8 (k − 12)
= 4 (k − 12) [k − 12 − 2]
= 4 (k − 12) (k − 14)

For equal roots,

b2 − 4ac =0
⇒ 4 (k − 12) [k − 14] = 0
⇒ Either 4 (k − 12) = 0 ⇒ k = 12

or k − 14 = 0 ⇒ k = 14

But k = 12 makes k − 12 = 0 which is not required

∴ k ≠ 12
However, k = 12 leads to a scenario where a = 0, which is not acceptable for a quadratic equation. Thus, we conclude: k = 14 is the only valid solution.

Q17. For what value of k does the equation 9x2 + 3kx + 4 = 0 has equal roots?

Sol. Comparing 9x2 + 3kx + 4 = 0 with ax2 + bx + c = 0, we get

a = 9
b = 3k
c = 4

∴ b2 − 4ac =(3k)2 − 4 (9) (4)
= 9k2 − 144
For equal roots,
b2 − 4ac = 0
⇒ 9k2 − 144 = 0
⇒9 k2 = 144

⇒ k2  =  1449

⇒  k2  = 16
⇒ k = ±  4

The document Class 10 Maths Chapter 4 Question Answers - Quadratic Equations is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
Are you preparing for Class 10 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 10 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
127 videos|550 docs|75 tests

Up next

FAQs on Class 10 Maths Chapter 4 Question Answers - Quadratic Equations

1. What is a quadratic equation?
Ans.A quadratic equation is a polynomial equation of the form ax² + bx + c = 0, where a, b, and c are constants, and a ≠ 0. The highest power of the variable (x) is 2.
2. How can I solve a quadratic equation?
Ans. A quadratic equation can be solved using various methods, including factoring, completing the square, and using the quadratic formula: x = (-b ± √(b² - 4ac)) / (2a).
3. What are the types of roots in a quadratic equation?
Ans. The roots of a quadratic equation can be classified as real and distinct, real and equal, or complex. The nature of the roots is determined by the discriminant (b² - 4ac).
4. Can you explain the quadratic formula?
Ans. The quadratic formula is a method used to find the roots of a quadratic equation. It is given by x = (-b ± √(b² - 4ac)) / (2a), where a, b, and c are the coefficients of the equation.
5. What is the significance of the discriminant in a quadratic equation?
Ans. The discriminant (D = b² - 4ac) indicates the nature of the roots of a quadratic equation. If D > 0, there are two distinct real roots; if D = 0, there is one real root (repeated); if D < 0, the roots are complex.
127 videos|550 docs|75 tests
Download as PDF

Up next

Explore Courses for Class 10 exam
Related Searches

Free

,

Exam

,

study material

,

Sample Paper

,

Class 10 Maths Chapter 4 Question Answers - Quadratic Equations

,

ppt

,

video lectures

,

MCQs

,

mock tests for examination

,

Extra Questions

,

past year papers

,

Semester Notes

,

Viva Questions

,

Class 10 Maths Chapter 4 Question Answers - Quadratic Equations

,

Important questions

,

pdf

,

shortcuts and tricks

,

Summary

,

Previous Year Questions with Solutions

,

Class 10 Maths Chapter 4 Question Answers - Quadratic Equations

,

practice quizzes

,

Objective type Questions

;