Agricultural Engineering Exam  >  Agricultural Engineering Notes  >  Strength of Material Notes - Agricultural Engg  >  Examples II - Slope Deflection Equation - Displacement Method, Strength of Materials

Examples II - Slope Deflection Equation - Displacement Method, Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering PDF Download

 Example

Draw the bending moment diagram for the follwing frame. EI is constant for all members.

Fig.14.1

Step 1: Fixed end Moments

\[M{}_{FBC} =-{{7.5 \times {{10}^2}} \over {12}} =-62.5{\rm{kNm}}\]  ;   \[M{}_{FCB} = {{7.5 \times {{10}^2}} \over {12}} = 62.5{\rm{kNm}}\]

\[M{}_{FAB} = M{}_{FBA} = M{}_{FCD} = M{}_{FDC} = 0\]

Step 2: Slope-Deflection Equaitons

Fig.14.2

Since A and D are fixed ends, θA = θD = 0

Since axial deformation is neglected, δBδC = δ


For span AB,

\[{M_{AB}} = {M_{FAB}} + {{2EI} \over {{L_{AB}}}}\left( {2{\theta _A} + {\theta _B} - {{3\delta } \over {{L_{AB}}}}} \right) = 0.4EI{\theta _B} - 0.24EI\delta \]       (14.1)

\[{M_{BA}} = {M_{FBA}} + {{2EI} \over {{L_{AB}}}}\left( {{\theta _A} + 2{\theta _B} - {{3\delta } \over {{L_{AB}}}}} \right) = 0.8EI{\theta _B} - 0.24EI\delta \]       (14.2)

For span BC,

\[{M_{BC}} = {M_{FBC}} + {{2EI} \over {{L_{BC}}}}\left( {2{\theta _B} + {\theta _C} - {{3\delta } \over {{L_{BC}}}}} \right) =-62.5 + 0.2EI\left( {2{\theta _B} + {\theta _C}} \right)\]            (14.3)

\[{M_{CB}} = {M_{FCB}} + {{2EI} \over {{L_{BC}}}}\left( {2{\theta _C} + {\theta _B} - {{3\delta } \over {{L_{BC}}}}} \right) = 62.5 + 0.2EI\left( {{\theta _B} + 2{\theta _C}} \right)\]            (14.4)

For span CD,

\[{M_{CD}} = {M_{FCD}} + {{2EI} \over {{L_{CD}}}}\left( {2{\theta _C} + {\theta _D} - {{3\delta } \over {{L_{CD}}}}} \right) = 0.8EI{\theta _C} - 0.24EI\delta \]        (14.5)

\[{M_{DC}} = {M_{FDC}} + {{2EI} \over {{L_{CD}}}}\left( {{\theta _C} + 2{\theta _D} - {{3\delta } \over {{L_{CD}}}}} \right) = 0.4EI{\theta _C} - 0.24EI\delta \]        (14.6)


Step 3: Equilibrium Equaitons

At B,

\[{M_{BA}} + {M_{BC}} = 0 \Rightarrow 0.8EI{\theta _B} - 0.24EI\delta-62.5+0.2EI\left( {2{\theta _B} + {\theta _C}} \right) = 0\]      

\[\Rightarrow 1.2EI{\theta _B} + 0.2EI{\theta _C}-0.24EI\delta-62.5=0\]                 (14.7)

At C,

\[{M_{CB}} + {M_{CD}} = 0 \Rightarrow 62.5 + 0.2EI\left( {{\theta _B} + 2{\theta _C}} \right) + 0.8EI{\theta _C}--0.24EI\delta= 0\]        

\[\Rightarrow 0.2EI{\theta _B} + 1.2EI{\theta _C}-0.24EI\delta+62.5=0\]                (14.8)

Step 3: Additional Shear Equation

Free body diagram of each member are shown bellow.

Fig.14.3

Summation of force in horizontal direction is zero \[ \Rightarrow \sum {{F_x} = 0}\]

Here, horizontal forces are, external horizontal force of 10 kN and shear forces VA and VB respectively at support A and D.

From the above FBD, VA and VB may be expressed as,

\[{V_A} = {{{M_{AB}} + {M_{BA}}} \over {{L_{AB}}}} = {{0.4EI{\theta _B} - 0.24EI\delta+0.8EI{\theta _B}-0.24EI\delta }\over 5}={{1.2EI{\theta _B}-0.48EI\delta } \over 5}\]

\[{V_B} = {{{M_{AB}} + {M_{BA}}} \over {{L_{AB}}}} = {{0.8EI{\theta _C} - 0.24EI\delta+0.4EI{\theta _C}-0.24EI\delta }\over 5}={{1.2EI{\theta _C}-0.48EI\delta } \over 5}\]

Now,

\[\sum {{F_x} = 0}\Rightarrow {V_A} + {V_B} + 10 = 0\]

\[{{1.2EI{\theta _B} - 0.48EI\delta } \over 5} + {{1.2EI{\theta _C} - 0.48EI\delta } \over 5} + 10 = 0\]

\[1.2EI{\theta _B} + 1.2EI{\theta _C}-0.96EI\delta+50= 0\]                 (14.9)

Solving equations (7) – (9), we have,

\[{\theta _B} = {{78.125} \over {EI}}\]  ,   \[{\theta _C} =-{{46.875} \over {EI}}\]  ,    \[\delta=-{{91.1458} \over {EI}}\]

Step 4: End Moment calculation

Substituting,  θB,  θC and δ into equations (1) – (6), we have,

\[{M_{AB}} = 0.4EI{\theta _B} - 0.24EI\delta= 9.375{\rm{ kNm}}\]

\[{M_{BA}} = 0.8EI{\theta _B} - 0.24EI\delta= 40.625{\rm{ kNm}}\]

\[{M_{BC}} =-62.5 + 0.2EI\left( {2{\theta _B} + {\theta _C}} \right) =-40.625{\rm{kNm}}\]

\[{M_{CB}} = 62.5 + 0.2EI\left( {{\theta _B} + 2{\theta _C}} \right) =59.375{\rm{ kNm}}\]

\[{M_{CD}} = 0.8EI{\theta _C} - 0.24EI\delta=-59.375{\rm{kNm}}\]

\[{M_{DC}} = 0.4EI{\theta _C} - 0.24EI\delta=-40.625{\rm{ kNm}}\]

 Fig. 14.4. Bending Moment Diagram.

The document Examples II - Slope Deflection Equation - Displacement Method, Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering is a part of the Agricultural Engineering Course Strength of Material Notes - Agricultural Engg.
All you need of Agricultural Engineering at this link: Agricultural Engineering
Are you preparing for Agricultural Engineering Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Agricultural Engineering exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
34 docs

Up next

Up next

Explore Courses for Agricultural Engineering exam
Related Searches

Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering

,

Extra Questions

,

pdf

,

past year papers

,

Important questions

,

practice quizzes

,

Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering

,

Semester Notes

,

Summary

,

Previous Year Questions with Solutions

,

ppt

,

mock tests for examination

,

study material

,

Examples II - Slope Deflection Equation - Displacement Method

,

Viva Questions

,

video lectures

,

Exam

,

Objective type Questions

,

Examples II - Slope Deflection Equation - Displacement Method

,

MCQs

,

shortcuts and tricks

,

Free

,

Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering

,

Sample Paper

,

Examples II - Slope Deflection Equation - Displacement Method

;