Commerce Exam  >  Commerce Notes  >  Mathematics (Maths) Class 11  >  Basics of Quadratic Equations

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce PDF Download

Quadratic Equation

  • A quadratic equation is a type of algebraic expression that involves a variable raised to the second degree. It is commonly written in the form: ax² + bx + c = 0.
  • The word quadratic comes from the Latin word quadratus, which means square. This relates to the fact that the variable x is squared in the equation.
  • In simpler terms, a quadratic equation is referred to as an equation of degree 2.
  • Quadratic equations can be found in many different situations and fields.
  • For instance, when a rocket is launched, its trajectory or path can be described using a quadratic equation.
  • These equations have a wide range of uses in areas like physics, engineering, and astronomy.
Basics of Quadratic Equations | Mathematics (Maths) Class 11 - CommerceQuadratic equations have maximum of two solutions, which can be real or complex numbers. These two solutions (values of x) are also called the roots of the quadratic equations and are designated as (α, β). We shall learn more about the roots of a quadratic equation in the below content.

What is Quadratic Equation?

  • A quadratic equation is a type of algebraic equation that involves the variable x and is of the second degree.
  • In its standard form, a quadratic equation is expressed as ax² + bx + c = 0, where:
    • a and b are the coefficients (numbers that multiply the variables),
    • x is the variable itself,
    • c is the constant term (a number without a variable).
  • For an equation to qualify as a quadratic equation, it is essential that the coefficient of (the first term) is a non-zero value. This means that a must not equal zero (a ≠ 0).
  • When writing a quadratic equation in standard form, the terms are arranged in a specific order:
    • First, the term appears,
    • Next, the x term is listed,
    • Finally, the constant term c is placed at the end.

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Further, in real math problems the quadratic equations are presented in different forms: (x - 1)(x + 2) = 0, -x2 = -3x + 1, 5x(x + 3) = 12x, x3 = x(x2 + x - 3). All of these equations need to be transformed into standard form of the quadratic equation before performing further operations.

Roots of a Quadratic Equation

The roots of a quadratic equation are the two values of x, which are obtained by solving the quadratic equation. These roots of the quadratic equation are also called the zeros of the equation. For example, the roots of the equation x2 - 3x - 4 = 0 are x = -1 and x = 4 because each of them satisfies the equation. i.e.,

  • At x = -1, (-1)2 - 3(-1) - 4 = 1 + 3 - 4 = 0
  • At x = 4, (4)2 - 3(4) - 4 = 16 - 12 - 4 = 0

There are various methods to find the roots of a quadratic equation. The usage of the quadratic formula is one of them.

Quadratic Formula

Quadratic formula is the simplest way to find the roots of a quadratic equation. There are certain quadratic equations that cannot be easily factorized, and here we can conveniently use this quadratic formula to find the roots in the quickest possible way. The two roots in the quadratic formula are presented as a single expression. The positive sign and the negative sign can be alternatively used to obtain the two distinct roots of the equation.

Quadratic Formula: The roots of a quadratic equation ax2 + bx + c = 0 are given by x = [-b ± √(b2 - 4ac)]/2a.

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

This formula is also known as the Sridharacharya formula.

Example: Let us find the roots of the same equation that was mentioned in the earlier section x- 3x - 4 = 0 using the quadratic formula.
a = 1, b = -3, and c = -4.

x = [-b ± √(b2 - 4ac)]/2a
= [-(-3) ± √((-3)2 - 4(1)(-4))]/2(1)
= [3 ± √25] / 2
= [3 ± 5] / 2
= (3 + 5)/2 or (3 - 5)/2
= 8/2 or -2/2
= 4 or -1 are the roots.

Proof of Quadratic Formula

Consider an arbitrary quadratic equation: ax2 + bx + c = 0, a ≠ 0
To determine the roots of this equation, we proceed as follows:
ax2 + bx = -c ⇒ x2 + bx/a = -c/a
Now, we express the left-hand side as a perfect square, by introducing a new term (b/2a)2 on both sides:
x2+ bx/a + (b/2a)2 = -c/a + (b/2a)2
The left-hand side is now a perfect square:
(x + b/2a)2 = -c/a + b2/4a2 ⇒ (x + b/2a)2 = (b2 - 4ac)/4a2
This is good for us, because now we can take square roots to obtain:
x + b/2a = ±√(b2 - 4ac)/2a
x = (-b ± √(b2 - 4ac))/2a
Thus, by completing the squares, we were able to isolate x and obtain the two roots of the equation.

Nature of Roots of the Quadratic Equation

The roots of a quadratic equation are usually represented to by the symbols alpha (α), and beta (β). Here we shall learn more about how to find the nature of roots of a quadratic equation without actually finding the roots of the equation.

The nature of roots of a quadratic equation can be found without actually finding the roots (α, β) of the equation. This is possible by taking the discriminant value, which is part of the formula to solve the quadratic equation. The value b2 - 4ac is called the discriminant of a quadratic equation and is designated as 'D'. Based on the discriminant value the nature of the roots of the quadratic equation can be predicted.

Discriminant: D = b2 - 4ac
D > 0, the roots are real and distinct
D = 0, the roots are real and equal.
D < 0, the roots do not exist or the roots are imaginary.

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Now, check out the formulas to find the sum and the product of the roots of the equation.

Sum and Product of Roots of Quadratic Equation

The coefficient of x2, x term, and the constant term of the quadratic equation ax2 + bx + c = 0 are useful in determining the sum and product of the roots of the quadratic equation. The sum and product of the roots of a quadratic equation can be directly calculated from the equation, without actually finding the roots of the quadratic equation. For a quadratic equation ax2 + bx + c = 0, the sum and product of the roots are as follows.

  • Sum of the Roots: α + β = -b/a = - Coefficient of x/ Coefficient of x2
  • Product of the Roots: αβ = c/a = Constant term/ Coefficient of x2
This doc is part of
74 videos|245 docs|91 tests
Join course for free

Writing Quadratic Equations Using Roots

The quadratic equation can also be formed for the given roots of the equation. If α, β, are the roots of the quadratic equation, then the quadratic equation is as follows.
x2 - (α + β)x + αβ = 0

Example: What is the quadratic equation whose roots are 4 and -1?
Solution: It is given that α = 4 and β = -1. The corresponding quadratic equation is found by:

x2 - (α + β)x + αβ = 0
x2 - (α + β)x + αβ = 0
x2 - (4 - 1)x + (4)(-1) = 0
x2 - 3x - 4 = 0

The following list of important formulas is helpful to solve quadratic equations.

  • The quadratic equation in its standard form is ax2 + bx + c = 0
  • The discriminant of the quadratic equation is D = b2- 4ac
    • For D > 0 the roots are real and distinct.
    • For D = 0 the roots are real and equal.
    • For D < 0 the real roots do not exist, or the roots are imaginary.
  • The formula to find the roots of the quadratic equation is x = [-b ± √(b2 - 4ac)]/2a.
  • The sum of the roots of a quadratic equation is α + β = -b/a.
  • The product of the Root of the quadratic equation is αβ = c/a.
  • The quadratic equation whose roots are α, β, is x2 - (α + β)x + αβ = 0.
  • The condition for the quadratic equations a1x2 + b1x + c1 = 0, and a2x2 + b2x + c2 = 0 having the same roots is (a1b2 - a2b1) (b1c2 - b2c1) = (a2c1 - a1c2)2.
  • When a > 0, the quadratic expression f(x) = ax2 + bx + c has a minimum value at x = -b/2a.
  • When a < 0, the quadratic expression f(x) = ax2 + bx + c has a maximum value at x = -b/2a.
  • The domain of any quadratic function is the set of all real numbers.

Methods to Solve Quadratic Equations

A quadratic equation can be solved to obtain two values of x or the two roots of the equation. There are four different methods to find the roots of the quadratic equation. The four methods of solving the quadratic equations are as follows.

  • Factorizing of Quadratic Equation
  • Using quadratic formula (which we have seen already)
  • Method of Completing the Square
  • Graphing Method to Find the Roots
Download the notes
Basics of Quadratic Equations
Download as PDF
Download as PDF

Solving Quadratic Equations by Factorization

Factorization of quadratic equation follows a sequence of steps. For a general form of the quadratic equation ax2 + bx + c = 0, we need to first split the middle term into two terms, such that the product of the terms is equal to the constant term. Further, we can take the common terms from the available term, to finally obtain the required factors as follows:

  • x2 + (a + b)x + ab = 0
  • x2 + ax + bx + ab = 0
  • x(x + a) + b(x + a)
  • (x + a)(x + b) = 0

Here is an example to understand the factorization process.

  • x2 + 5x + 6 = 0
  • x2 + 2x + 3x + 6 = 0
  • x(x + 2) + 3(x + 2) = 0
  • (x + 2)(x + 3) = 0

Thus the two obtained factors of the quadratic equation are (x + 2) and (x + 3). To find its roots, just set each factor to zero and solve for x. i.e., x + 2 = 0 and x + 3 = 0 which gives x = -2 and x = -3. Thus, x = -2 and x = -3 are the roots of x2 + 5x + 6 = 0.

Further, there is another important method of solving a quadratic equation. The method of completing the square for a quadratic equation is also useful to find the roots of the equation.

Method of Completing the Square

The method of completing the square in a quadratic equation is to algebraically square and simplify, to obtain the required roots of the equation. Consider a quadratic equation ax2 + bx + c = 0, a ≠ 0. To determine the roots of this equation, we simplify it as follows:

  • ax2 + bx + c = 0
  • ax2 + bx = -c
  • x2 + bx/a = -c/a

Now, we express the left-hand side as a perfect square, by introducing a new term (b/2a)2 on both sides:

  • x2 + bx/a + (b/2a)2 = -c/a + (b/2a)2
  • (x + b/2a)2 = -c/a + b2/4a2
  • (x + b/2a)2 = (b2 - 4ac)/4a2
  • x + b/2a = +√(b2- 4ac)/2a
  • x = - b/2a +√(b2- 4ac)/2a
  • x = [-b ± √(b2 - 4ac)]/2a

Here the '+' sign gives one root and the '-' sign gives another root of the quadratic equation. Generally, this detailed method is avoided, and only the quadratic formula is used to obtain the required roots.

Graphing a Quadratic Equation

The graph of the quadratic equation ax2 + bx + c = 0 can be obtained by representing the quadratic equation as a function y = ax2 + bx + c. Further by solving and substituting values for x, we can obtain values of y, we can obtain numerous points. These points can be presented in the coordinate axis to obtain a parabola-shaped graph for the quadratic equation.

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

The point(s) where the graph cuts the horizontal x-axis (typically the x-intercepts) is the solution of the quadratic equation. These points can also be algebraically obtained by equalizing the y value to 0 in the function y = ax2 + bx + c and solving for x.

Take a Practice Test
Test yourself on topics from Commerce exam
Practice Now
Practice Now

Quadratic Equations Having Common Roots

Consider two quadratic equations having common roots a1x2 + b1x + c1 = 0, and a2x2 + b2x + c2 = 0. Let us solve these two equations to find the conditions for which these equations have a common root. The two equations are solved for x2 and x respectively.

(x2)(b1c2 - b2c1) = (-x)/(a1c2 - a2c1) = 1/(a1b2 - a2b1)
x2 = (b1c2 - b2c1) / (a1b2 - a2b1)
x = (a2c1 - a1c2) / (a1b2 - a2b1)

Hence, by simplifying the above two expressions we have the following condition for the two equations having the common root.
(a1b2 - a2b1) (b1c2 - b2c1) = (a2c1 - a1c2)2

Maximum and Minimum Value of Quadratic Expression

The maximum and minimum values for the quadratic function F(x) = ax2 + bx + c can be observed in the below graphs. For positive values of a (a > 0), the quadratic expression has a minimum value at x = -b/2a, and for negative value of a (a < 0), the quadratic expression has a maximum value at x = -b/2a. x = -b/2a is the x-coordinate of the vertex of the parabola.

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

The maximum and minimum values of the quadratic expressions are of further help to find the range of the quadratic expression: The range of the quadratic expressions also depends on the value of a. For positive values of a( a > 0), the range is [ F(-b/2a), ∞), and for negative values of a ( a < 0), the range is (-∞, F(-b/2a)].

  • For a > 0, Range: [ f(-b/2a), ∞)
  • For a < 0, Range: (-∞, f(-b/2a)]

Note that the domain of a quadratic function is the set of all real numbers, i.e., (-∞, ∞).

Tips and Tricks on Quadratic Equation:

Some of the below-given tips and tricks on quadratic equations are helpful to more easily solve quadratic equations.

  • The quadratic equations are generally solved through factorization. But in instances when it cannot be solved by factorization, the quadratic formula is used.
  • The roots of a quadratic equation are also called the zeroes of the equation.
  • For quadratic equations having negative discriminant values, the roots are represented by complex numbers.
  • The sum and product of the roots of a quadratic equation can be used to find higher algebraic expressions involving these roots.
The document Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce is a part of the Commerce Course Mathematics (Maths) Class 11.
All you need of Commerce at this link: Commerce
Are you preparing for Commerce Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Commerce exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
74 videos|245 docs|91 tests

Up next

FAQs on Basics of Quadratic Equations - Mathematics (Maths) Class 11 - Commerce

1. What is a quadratic equation and how can it be identified?
Ans.A quadratic equation is a polynomial equation of the second degree, typically written in the standard form \( ax^2 + bx + c = 0 \), where \( a \), \( b \), and \( c \) are constants and \( a \neq 0 \). It can be identified by the highest exponent of the variable \( x \) being 2.
2. How can quadratic equations be solved using square roots?
Ans. Quadratic equations can be solved using square roots when they are in the form \( x^2 = k \). To solve, isolate \( x^2 \) on one side of the equation, then take the square root of both sides, remembering to consider both the positive and negative roots. For example, from \( x^2 = 9 \), we get \( x = 3 \) or \( x = -3 \).
3. What is the Zero Product Property and how is it used in solving factored quadratic equations?
Ans. The Zero Product Property states that if the product of two factors is zero, at least one of the factors must be zero. This is used in solving factored quadratic equations by setting each factor equal to zero. For example, if \( (x - 2)(x + 3) = 0 \), set \( x - 2 = 0 \) and \( x + 3 = 0 \), resulting in solutions \( x = 2 \) and \( x = -3 \).
4. How do you solve factorable quadratic equations?
Ans. To solve factorable quadratic equations, first factor the quadratic into two binomials. For example, for \( x^2 + 5x + 6 = 0 \), it factors to \( (x + 2)(x + 3) = 0 \). Then, apply the Zero Product Property by setting each binomial equal to zero, leading to \( x + 2 = 0 \) (solution \( x = -2 \)) and \( x + 3 = 0 \) (solution \( x = -3 \)).
5. What is the quadratic formula and when should it be used?
Ans. The quadratic formula is \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) and is used to find the solutions of any quadratic equation in standard form \( ax^2 + bx + c = 0 \). It should be used when the quadratic cannot be easily factored or when the coefficients are complex, providing a reliable method to find both real and complex solutions.
74 videos|245 docs|91 tests
Download as PDF

Up next

Explore Courses for Commerce exam
Related Searches

pdf

,

Extra Questions

,

video lectures

,

study material

,

Previous Year Questions with Solutions

,

past year papers

,

Viva Questions

,

Objective type Questions

,

ppt

,

Summary

,

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

,

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

,

practice quizzes

,

Semester Notes

,

MCQs

,

shortcuts and tricks

,

Important questions

,

Sample Paper

,

Exam

,

mock tests for examination

,

Free

,

Basics of Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

;