Commerce Exam  >  Commerce Notes  >  Mathematics (Maths) Class 11  >  NCERT Exemplar: Trigonometric Functions

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce PDF Download

Q.1. Prove that 
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
 NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
[Rationalizing the denominator]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce R.H.S. Hence proved.

Q.2. If NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then prove that 

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce is also equal to y.
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that:
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
Hence proved.

Q.3. If m sin θ = n sin (θ + 2α), then prove that tan (θ + α) cot α = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
[Hint: Express NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce and apply componendo and dividendo]
Ans.
Given that: m sin θ = n sin (θ + 2α)
    NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Using componendo and dividendo theorem we get
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
Hence proved.

Q.4. If cos (α + β) = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce and sin (α – β) =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce where α lie between 0 and NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce find the value of tan2α.
[Hint: Express tan 2 α as tan (α + β + α – β]
Ans.
Given that:
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce      

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Now    tan 2α  = tan [α + β + α – β]
= tan [(α  + β) + (α  – β)]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence,  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.5. If tan x = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce  then find the value of  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: tan x = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.6. Prove that cosθ cos NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce sin 7θ sin 8θ.
[Hint: Express L.H.S. =  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
L.H.S. NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= – sin 8θ sin (– 7θ) = sin 7θ sin 8θ     [∵ sin (-θ) = -sin θ]
L.H.S. = R.H.S. Hence proved.

Q.7. If  a cos θ + b sin θ = m and a sin θ – b cos θ = n, then show that a2 + b2 = m2 + n2
Ans.
Given that: a cos θ + b sin θ
= m and a sin θ  b cos θ = n
R.H.S. = m2 + n2 = (a cos θ + b sin θ)2 + (a sin θ – b cos θ)2
= a2 cos2 θ + b2 sin2 θ + 2ab sin θ cos θ + a2 sin2 θ + b2 cos2 θ  2ab sin θ cos θ
= a2 cos2 θ + b2  sin2 θ + a2  sin2 θ + b2  cos2 θ
= a2(cos2 θ + sin2 θ) + b2(sin2 θ + cos2 θ)
= a2.1 + b2.1 = a2 + b2  L.H.S.
L.H.S = R.H.S.
Hence    proved.

Q.8. Find the value of tan 22°30 ′ .
[Hint: Let θ = 45°, use NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. 
Let 22°30’ NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce ∴ θ =45°
tan 22°30’ NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Put θ = 45°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, tan 22°30’ = √2 - 1    

Q.9. Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A.
Ans.
L.H.S. sin 4A = sin (A + 3A)
= sin A cos 3A + cos A sin 3A
= sin A(4 cosA – 3 cos A) + cos A(3 sin A – 4 sin3 A)
= 4 sin A cos3 A – 3 sin A cos A + 3 sin A cos A – 4 cos A sin3 A
= 4 sin A cos3 A – 4 cos A sin3 A. R.H.S.
L.H.S. = R.H.S.
Hence proved.

Q.10. If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2 sinθ, then use m2 – n2 = (m + n) (m – n)]
Ans.
Given that: tan θ  + sin θ = m and tan θ – sin θ = n
L.H.S. m2 – n2 = (m + n)(m – n)
= [(tan θ + sin θ) + (tan θ – sin θ)]. [(tan θ + sin θ) – (tan θ – sin θ)]
= (tan θ + sin θ + tan θ – sin θ).(tan θ + sin θ – tan θ + sin θ)
= 2 tan θ.2 sin θ= 4 sin θ tan θ. R.H.S.
L.H.S. = R.H.S. Hence proved.

Q.11. If tan (A + B) = p, tan (A – B) = q, then show that tan 2 A = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
[Hint: Use 2A = (A + B) + (A – B)]
Ans.
Given that: tan (A + B) = p, tan (A – B) = q
tan 2A = tan (A + B + A – B) = tan [(A + B) + (A – B)]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.12. If cosα + cosβ = 0 = sinα + sinβ, then prove that cos 2α + cos 2β = – 2cos (α + β).
[Hint: (cosα + cosβ)2 – (sinα + sinβ)2 = 0]
Ans.
Given that: cos α + cos β = 0 ................(i)
and sin α + sin α = 0 ...............(ii)
From  (i) and (ii) we have
(cos α + cos β)2  (sinα + sin β)2 = 0
⇒(cos2 α + cos2 β  + 2 cos α cos  β) – (sin2 α + sin2  β + 2 sin α sin  β) = 0
⇒cos2 α + cos2  β + 2 cos α cos  β – sin2 α – sin2  β – 2 sin α sin  β = 0
⇒(cos2 α – sin2 α) + (cos2  β  – sin2  β) + 2(cos α cos  β – sin α sin  β) = 0
⇒cos2 α + cos2 β + 2 cos (α +  β) = 0
Hence, cos 2α + cos 2 β = – 2 cos (α +  β).
Hence proved.

Q.13. If  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then show that

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 [Hint: Use Componendo and Dividendo].
Ans.
Given that:NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(Using componendo and dividendo theorem)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.14. If tanθ = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce  then show that sinα + cosα = √2 cosθ.
[Hint: Express tanθ = tan NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒   √2 cos θ = cos α + sin α
⇒ sin α + cos α = √2 cos θ.
Hence proved.

Q.15. If sinθ + cosθ = 1, then find the general value of θ.
Ans.
Given that: sin θ + cos θ  = 1
Dividing both sides by NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce we get
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce  ...(1)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the general values of θ are 2nπ,n∈Z
Alternate method:
From eqn. (i) we get
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the general value of NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.16. Find the most general value of θ satisfying the equation tanθ = –1 and
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: tan θ = – 1 and cos θ = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
tan θ = – 1
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the general solution is NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.17. If cotθ + tanθ = 2 cosecθ, then find the general value of θ.
Ans.
Given that: cot θ + tan θ = 2 cosec θ
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 ⇒  2sin θ cos θ = sin θ
⇒ 2 sin θ cos θ  sin θ = 0
⇒ sin θ (2 cos θ  1) = 0
⇒ sin θ = 0 or 2 cos θ  1 = 0 or NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the general values of θ is NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.18. If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Ans.
Given that: 2 sin2 θ = 3 cos θ
⇒ 2(1 – cos2 θ) = 3 cos θ
⇒ 2 – 2 cos2 θ – 3 cos θ = 0
⇒ 2 cos2 θ + 3 cos θ – 2 = 0
⇒ 2 cos2 θ+ 4 cos θ – cos θ – 2 = 0
⇒2 cos θ (cos θ + 2) – 1(cos θ + 2) = 0
⇒ (cos θ + 2) (2 cos θ – 1) = 0   
⇒ cos θ + 2 = 0 or 2 cos θ – 1 = 0  
⇒ cos θ  - 2 [- 1  cos θ  1]
 2 cos θ  1 = 0
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
∴  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
and  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the value of θ are NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.19. If secx cos5x + 1 = 0, where 0 < x ≤NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then find the value of x.
Ans.
Given that: sec x cos 5x + 1 = 0
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ cos 5x + cos x = 0
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ cos 3x . cos 2x = 0
⇒ cos 3x = 0 or cos 2x = 0
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the values of x are NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Long Answer Type
Q.20. If sin (θ + α) = a and sin (θ + β) = b, then prove that cos 2(α – β) – 4ab cos (α – β) = 1 – 2a2 – 2b2  
[Hint: Express cos (α – β) = cos ((θ + α) – (θ + β))]
Ans.
Given that:
sin (θ + α) = a and sin  + β) = b  .... (i)
cos  - β) = cos  + α - θ  β) = cos [(θ + α)   + β)] 
∴ cos  - β)= cos  + α) cos  + β) + sin  + α) sin  + β)   
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Now cos 2(α – β) – 4ab cos (α – β)
= 2 cos2 (α – β) – 1 – 4ab cos (α – β) [ cos 2θ = 2 cos2 θ – 1]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 2a2 b2 + 2 - 2a2 - 2b2 + 2a2 b2 + NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 1  2a2  2b2
Hence, cos  2  - β)  4ab cos  - β) = 1  2a2  2b2.
Hence proved.

Q.21. If cos (θ + φ) = m cos (θ – φ), then prove that NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
[Hint: Express NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce and apply Componendo and Dividendo]
Ans.
Given that:
cos (θ + φ) = m cos (θ – φ)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Using componendo and dividendo theorem, we get
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
Hence proved.

Q.22. Find the value of the expression
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that:
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 3[ cos4 α + sin4  + α)]  2[cos6 α + sin6  - α)] = 3[cos4 α + sin4 α]  2[cos6 α + sin6 α]   
= 3[cos4 α + sin4 α + 2 sin2 α cos2 α - 2 sin2 α cos2 α]  2[(cos2 α + sin2 α)3  3 cos2 α sin2 α (cos2 α + sin2 α)]                                 
=  3[(cos2 α + sin2 α)2  2 sin2 α cos2 α]  2[1  3 cos2 α sin2 α]
= 3[1  2 sin2 α cos2 α]  2[1  3 cos2 α sin2 α]
= 3 – 6  sin2 α cos2 α - 2 + 6 cos2 α sin2 α
= 3  2 = 1
Hence, the value of the given expression is 1.

Q.23. If a cos 2θ + b sin 2θ = c has α and β as its roots, then prove that tanα + tan β = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
[Hint: Use the identities cos 2θ = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: a cos  + b sin  = c..... (i)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce     
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce    
 a – a tan2θ + 2b tanθ = c(1 +  tan2 θ)
⇒ a  a tan2θ + 2b tan θ = c + c tan2 θ
⇒ a  a tan2θ + 2b tan θ  c tan2 θ  c = 0
⇒ - (a + c) tan2 θ + 2b tan θ + (a  c) = 0
 (a + c) tan2 θ  2b tan θ + (c  a) = 0..... (ii)
Since α and β are the roots of this equation
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce Hence proved.

Q.24.  If x = sec φ – tan φ and y = cosec φ + cot φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = – (xy + 1)]
Ans.
Given that: x = sec φ – tan φ
and y = cosec φ + cot φ
xy + x – y + 1 = 0
L.H.S.   xy + x – y + 1 = (sec φ – tan φ)
(cosec φ  + cot φ) + (sec φ – tan φ) – (cosec  φ + cot φ) + 1
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce R.H.S.
L.H.S. = R.H.S.
Hence proved.

Q.25. If θ lies in the first quadrant and cosθ = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then find the value of 
cos (30° + θ) + cos (45° – θ) + cos (120° – θ).
Ans.
Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
But θ lies in I quadrant.
∴  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Now cos (30° + θ) + cos (45° – θ) + cos (120° – θ)
= cos 30° cos θ – sin 30° sin θ + cos 45° cos θ + sin 45° sin θ + cos 120° cos θ + sin 120° sin θ
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the required solution = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.26. Find the value of the expression NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
[Hint: Simplify the expression to NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
 NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the required value of the expression = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.27.Find the general solution of the equation
5cos2θ + 7sin2θ – 6 = 0
Ans.
5 cos2 θ + 7 sin2 θ  6 = 0
⇒ 5 cos2 θ + 7(1  cos2 θ)  6 = 0
⇒ 5 cos2 θ + 7– 7 cos2 θ  6 = 0
 - 2 cos2 θ + 1 = 0
⇒ 2 cos2 θ = 1
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
∴  NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the general solution of NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.28. Find the general solution of the equation
sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Ans.
Given that: sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
⇒ (sin 3x + sin x) – 3 sin 2x = (cos 3x + cos x) – 3 cos 2x
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ 2 sin 2x.cos x – 3 sin 2x = 2 cos 2x .cos x – 3 cos 2x
⇒ 2 sin 2x cos x – 2 cos 2x.cos x = 3 sin 2x – 3 cos 2x
⇒ 2 cos x(sin 2x – cos 2x) = 3(sin 2x – cos 2x)
⇒ 2 cos x (sin 2x – cos 2x) – 3(sin 2x – cos 2x) = 0
⇒ (sin 2x – cos 2x) (2 cos x – 3) = 0
⇒ sin 2x – cos 2x = 0 and 2 cos x – 3 ≠0 [∵  -1 ≤ cos x ≤ 1]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the general solution of the equation is
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.29. Find the general solution of the equation ( √3 – 1) cosθ + ( √3 + 1) sinθ = 2
[Hint: Put √3 – 1=  r sinα, √3 + 1 = r cosα which gives tanα = tan NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: ( √3 - 1) cos θ + ( √3 + 1) sin θ = 2
Put √3 - 1 = r sin α, √3 + 1 = r cos α
Squaring and adding, we get
r2 = √3 + 1 - 2 √3 + √3 + 1 + 2 √3
r2 = 8 r = ± 2 √2
Now the given equation can be written as
r sin α cos θ + r cos α sin θ = 2
⇒ r (sin α cos θ + cos α sin θ = 2
⇒ r (sin α cos θ + cos α sin θ) = 2
⇒2 √2 sin ( α + θ) = 2
⇒ sin (α + θ) = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 sin (α+ θ) = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Now NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Putting the value of α in equation (i) we get
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the general solution of the given equation is
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Objective Type Questions
Q.30. If sin θ + cosec θ = 2, then sin2 θ + cosec2 θ is equal to
(a) 1
(b) 4
(c) 2
(d) None of these
Ans. (c)
Solution.
Given that: sin θ + cosec θ = 2
Squaring both sides, we get
(sin θ +  cosec θ)2 = (2)2
⇒ sin2  θ +  cosec2 θ + 2 sin θ cosec θ = 4
⇒ sin2 θ + cosec2 θ + 2 NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ sin2 θ + cosec2 θ + 2 = 4
⇒ sin2 θ + cosec2 θ = 2
Hence, the correct option is (c).

Q.31. If f (x) = cos2 x + sec2 x, then
(a) f (x) < 1
(b) f (x) = 1
(c) 2 < f (x) < 1
(d) f(x) ≥ 2
[Hint: A.M ≥ G.M.]
Ans. (d)
Solution.
Given that: f(x) = cos2 x + sec2 x
We know that AM ≥ GM
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ f(x)  2
Hence, the correct option is (d)

Q.32. If tan θ = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce and tan φ =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then the value of θ + φ is
(a) π/6
(b) π
(c) 0
(d) π/4
Ans. (d)
Solution.
We know that
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
Hence the correct option is (d).

Q.33. Which of the following is not correct?
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) cos θ = 1
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) tan θ = 20
Ans. (c)
Solution.
sin θ =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce is correct. ∵1  sin θ  1
So (a) is correct.
cos θ = 1 is correct. ∵ cos  = 1
So (b) is correct.
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
⇒ cos θ = 2 is not correct.
 - 1  cos θ  1
Hence, (c) is not correct.

Q.34. The value of tan 1° tan 2° tan 3° ... tan 89° is
(a) 0
(b) 1
(c) 1/2
(d) Not defined
Ans. (b)
Solution.
Given that: tan 1° tan 2° tan 3° .... tan 89°
= tan 1° tan 2° tan 3° .... tan 45°.tan (90 – 44°).tan (90 – 43°) ...tan (90 – 1°)
= tan 1° cot 1°.tan 2°.cot 2°.tan 3°.cot 3° ... tan 89°.cot 89°
= 1.1.1.1 ... 1.1 = 1
Hence, the correct option is (b).

Q.35. The value of NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(a) 1
(b) √3
(c) √3/2
(d) 2
Ans. (c)
Solution.
Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Let θ = 15°   = 30°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (c).

Q.36. The value of cos 1° cos 2° cos 3° ... cos 179° is
(a) 1/√2
(b) 0
(c) 1
(d) –1

Ans. (b)
Solution.
Given expression is cos 1°.cos 2°.cos 3° ... cos 179°
⇒cos 1°.cos 2°.cos 3° ... cos 90°.cos 91° ... cos 179°
⇒ 0 [∵ cos 90° = 0]
Hence, the correct option is (b).

Q.37. If tan θ = 3 and θ lies in third quadrant, then the value of sin θ is
(a)NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
(b) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. (c)
Solution.
tan θ =  3,  θ lies in third quadrant, it is positive.
 NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commercewhere θ lies in third quadrant
Hence the correct option is (c).
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.38. The value of tan 75° – cot 75° is equal to
(a) 2√3
(b) 2 + √3
(c) 2 − √3
(d) 1
Ans. (a)
Solution.
The given expression is tan 75° – cot 75°
tan 75° – cot 75° = tan 75° – cot (90 – 15°)
= tan 75° – tan 15° = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (a).

Q.39. Which of the following is correct?
(a) sin1° > sin 1
(b) sin 1° < sin 1
(c) sin 1° = sin 1
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. (b)
Solution.
We know that if  θ  increases  then the value of  sin θ  also increases
So, sin  < sin 1 NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence the correct option is (b).

Q.40. If tan α = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then α + β is equal to
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. (d)
Solution.
Given that NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ tan  + β) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (d).

Q.41. The minimum value of 3 cosx + 4 sinx + 8 is

(a) 5
(b) 9
(c) 7
(d) 3
Ans. (d)
Solution.
The given expression is 3 cos x + 4 sin x + 8
Let y = 3 cos x + 4 sin x + 8
⇒ y  8 = 3 cos x  + 4 sin x
Minimum value of y  8 NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce  
 ⇒ y – 8 = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ y = 8 – 5 = 3
So, the minimum value of the given expression is 3.
Hence, the correct option is (d).

Q.42. The value of tan 3A – tan 2A – tan A is equal to
(a) tan 3A tan 2A tan A
(b) – tan 3A tan 2A tan A
(c) tan A tan 2A – tan 2A tan 3A – tan 3A tan A
(d) None of these
Ans. (a)
Solution.
The given expression is tan 3A – tan 2A – tan A
tan 3A = tan (2A + A)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ tan 3A(1 – tan 2A tan A) = tan 2A + tan A
⇒ tan 3A – tan 3A tan 2A tan A = tan 2A + tan A
⇒ tan 3A – tan 2A – tan A = tan 3A tan 2A tan A
Hence, the correct option is (a).

Q.43.  The value of sin (45° + θ) – cos (45° – θ) is
(a) 2 cosθ
(b) 2 sinθ
(c) 1
(d) 0
Ans. (d)
Solution.
Given expression is (sin 45° + θ)  cos  (45°- θ)
Sin (45° + θ) = sin 45° cos θ + cos 45° sin θ
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Cos (45° - θ) = cos 45° cos θ + sin 45° sin θ
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Sin (45°+ θ - cos (45°- θ)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 0. 
Hence, the correct option is (d).

Q.44. The value of NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(a) 2 cosθ
(b) 2 sinθ
(c) 1
(d) 0
Ans. (c)
Solution.
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (c).

Q.45. cos 2θ cos 2φ + sin2 (θ – φ) – sin2 (θ + φ) is equal to
(a) sin 2(θ + φ)
(b) cos 2(θ + φ)
(c) sin 2(θ – φ)
(d) cos 2(θ – φ)
[Hint: Use sin2 A – sin2 B = sin (A + B) sin (A – B)]
Ans. (b)
Solution.
Given that: cos 2θ.cos 2 φ + sin2  - φ)  sin2 + φ)
Cos  cos 2φ + sin2  - φ)  sin2  + φ)
= cos  cos 2φ + sin  - φ + θ + φ).sin  - φ - θ - φ)
[∵ sin2 A   sin2 B =  sin (A +  B).sin  (A  B)]
= cos  cos 2φ + sin 2θ.sin ( - 2φ)
= cos  cos 2φ - sin  sin 2φ   [  sin(φ - θ) = - sin θ]
=    cos 2(θ + φ)  
Hence, the correct option is (b).    

Q.46. The value of cos 12° + cos 84° + cos 156° + cos 132° is  
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) 1
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. (c)
Solution.
The given expression is cos 12° + cos 84° + cos 156° + cos 132° (cos 132° + cos 12°) + (cos 156° + cos 84°)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 2 cos 72°.cos 60° + 2 cos 120°.cos 36°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= cos 72° – cos 36°
= cos (90° – 18°) – cos 36° = sin 18° – cos 36°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (c).

Q.47. If tan A = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce tan B =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then tan (2A + B) is equal to
(a) 1
(b) 2
(c) 3
(d) 4
Ans. (c)
Solution.
Given that: tan A = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce and tan B =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
tan 2A = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
So, tan 2A = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce and tan B =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
tan (2A + B) =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (c).

Q.48. The value of NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce is
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) 1
Ans. (c)
Solution.
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= – sin 18°.sin 54°
= – sin 18°.sin (90° – 36°) = – sin 18°.cos 36°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (c).

Q.49. The value of sin 50° – sin 70° + sin 10° is equal to
(a) 1
(b) 0
(c) 1/2
(d) 2
Ans. (b)
Solution.
Given expression is sin 50° – sin 70° + sin 10°
(sin 50° – sin 70°) + sin 10°= NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 2 cos 60°.(– sin 10°) + sin 10°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= – sin 10° + sin 10°
= 0
Hence, the correct option is (b).

Q.50. If sin θ + cos θ = 1, then the value of sin 2θ is equal to

(a) 1
(b) 1/2
(c) 0
(d) –1
Ans. (c)
Solution.
Given that:
sin θ + cos θ = 1
Squaring both sides, we get,
⇒ (sin θ + cos θ)2 = (1)2
⇒ sin2 θ + cos2 θ + 2 sin θ cos θ = 1
⇒ 1 + sinθ = 1
⇒ sinθ = 1  1 = 0
Hence, the correct option is (c).


Q.51. If α + β =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then the value of (1 + tan α) (1 + tan β) is
(a) 1
(b) 2
(c) – 2
(d) Not defined
Ans. (b)
Solution.
 Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ tan α + tan β = 1– tan α tan β
⇒ tan α + tan β + tan α tan β = 1
On adding 1 both sides, we get,
⇒ 1 + tan α + tan β + tan α tan β = 1 + 1
⇒ 1(1 + tan α) + tan β (1 + tan α) = 2
⇒ (1 + tan α )(1 + tan β) = 2
Hence, the correct option is (b)

Q.52. If sin θ = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce and θ lies in third quadrant then the value of 

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce is
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. (c)
Solution.
Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce lies in third quadrant
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce lies in third quadrant
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (c).

Q.53. Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is
(a) 0
(b) 1
(c) 2
(d) 3

Ans. (c)
Solution.
Given equation is tan x + sec x = 2 cos x
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ 1 + sin x = 2 cos2 x
⇒ 2 cos2 x – sin x – 1 = 0
    2(1 – sin2 x) – sin x – 1 = 0
⇒  2 – 2 sin2 x – sin x – 1 = 0
⇒ – 2 sin2 x – sin x + 1 = 0
⇒  sin2 x + sin x – 1 = 0
Since, the equation is a quadratic equation in sin x.
So it will have 2 solutions.
Hence, the correct option is (c).

Q.54. The value of NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerceis given by
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) 1
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. (a) 
Solution.
The given expression is NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (a).

Q.55. If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A  –  5 cos A + sin A is equal to
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. (b)
Solution.
 Given that: 3 tan A + 4 = 0, A lies in second quadrant
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
[A lies in second quadrant]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
and NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
∴ 2 cot A – 5 cos A + sin A
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (b).

Q.56. The value of cos2 48° – sin2 12° is
(a) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(b) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
[Hint:  Use cos2 A – sin2 B = cos (A + B) cos (A – B)]
Ans. (a)
Solution.
Given expression is cos48° – sin2 12°
cos2 48° – sin2 12° = cos (48° + 12°).cos (48° – 12°)
[∵ cos2 A – sin2 B = cos (A + B).cos (A – B)]
= cos 60°.cos 36°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (a).

Q.57. If tan α =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce  tan β =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then cos 2α is equal to
(a) sin 2β
(b) sin 4β
(c) sin 3β
(d) cos 2β
Ans. (b)
Solution.
Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Now NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
cos 2α = sin 4β =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (b).

Q.58. If tan θ = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce  then b cos 2θ  + a sin 2θ  is equal to
(a) a
(b) b
(c) a/b

(d) None
Ans. (b)
Solution.
Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
b cos  +  a sin NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (b).

Q.59. If for real values of x, cos θ =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then
(a) θ is an acute angle
(b) θ is right angle
(c) θ is an obtuse angle
(d) No value of θ is possible
Ans. (d)
Solution.
Given that: NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ x2 + 1 =  x cos θ
 x2  x cos θ + 1 = 0
For real value of x, b2  4ac  0
⇒ (- cos θ)2  4 × 1 × 1  0
⇒ cos2 θ  4  0
 cos2 θ  4
⇒ cos θ  2 [- 1  cos θ  1]
So, the value of θ is not possible.
Hence, the correct options (d).

Fill in the blanks

Q.60. The value of NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerceis _______ .
Ans. 
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the value of filler is 1.

Q.61. If k =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then the numerical value of k is _______.
Ans. 
Given that: k = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ k = sin 10°. Sin 50°. Sin 70°
⇒ k = sin 10° sin (90° -  40°) sin (90° - 20°)
⇒ k = sin 10° cos 40° cos 20°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler is NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.62. If tan A =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce, then tan 2A = _______.
Ans.
Given that:  tan A = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
So, tan 2A = tan B
Hence, the value of the filler is tan B.

Q.63. If sin x + cos x = a, then
(i) sin6 x + cos6 x = _______
(ii) | sin x – cos x | = _______.
Ans. 
Given that: sin x + cos x = a
Squaring both sides, we get,
(sin x + cos x)2 = a2
⇒ sin2 x + cos2 x + 2 sin x cos x = a2
⇒ 1 + 2 sin x cos x = a2
⇒ sin x cos x = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce ...(i)
(i) sin6 x + cos6 x = (sin2 x)3 + (cos2 x)3
= (sin2 x + cos2 x)3 – 3 sin2 x cos2 x(sin2 x + cos2 x)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler is NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
(ii) |sin x  cos x|2 = sin2 x + cos2 x   2 sin x cos x
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 1 – (a2 – 1)
= 1 – a2 + 1
= 2  a2
    |sin x  cos x| = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce   
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler is NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.64. In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is _______.
[Hint: A + B = 90° ⇒ tan A tan B = 1 and tan A + tan B = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. 
Given a ΔABC with ∠C = 90°
x2    (tan A + tan B)x + tan A.tan B = 0
A + B = 90°  [∵  ∠C = 90°]
⇒ tan (A + B) = tan 90°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 1 – tan A tan B = 0
 tan A tan B = 1……(i)
Now  tan A + tan B = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
∴ tan A + tan B =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce……(ii)
From (i) and (ii) we get
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler is NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

Q.65. 3 (sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) = ______.
Ans. 
Given expression is 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x)
= 3[sin2 x + cos2 x – 2 sin x cos x]2 + 6(sin2 x + cos2 x + 2 sin x cos x) + 4 [(sin2 x)3 + (cos2 x)3]
= 3[1 – 2 sin x cos x]2 + 6(1 + 2 sin x cos x) + 4[(sin2 x + cos2 x)3 – 3 sinx cos2 x (sin2 x + cos2 x)]
= 3[1 + 4 sinx cos2 x – 4 sin x cos x] + 6(1 + 2 sin x cos x) + 4[1 – 3 sin2 x cos2 x]
= 3 + 12 sin2 x cos2 x – 12 sin x cos x + 6 + 12 sin x cos x + 4 – 12 sin2 x cos2 x
= 3 + 6 + 4 = 13
Hence, the value of the filler is 13.

Q.66. Given x > 0, the values of f (x) = – 3 cos NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce lie in the interval _______.
Ans. 
Given that: f(x) =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Put NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 f(x) = - 3 cos y
 - 1  cos y  1
3  - 3 cos y  -3
⇒ - 3  - 3 cos y  3
 - 3  - 3 cos ≤ NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce, x > 0
Hence, the value of the filler is [– 3, 3].

Q.67. The maximum distance of a point on the graph of the function y = √3 sin x + cos x from x-axis is _______.
Ans.
Given that y = √3 sin x + cos x ...(i)
∴ The maximum distance from a point on the graph of eqn. (i) from x-axis
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler is 2.

state whether the statements is True or False? Also give justification.
Q.68. If tan A =NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce then tan 2A = tan B
Ans. 
Given that: tan A NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
tan 2A = NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
∴ tan 2A = tan B
Hence, the statement is ‘True’.

Q.69. The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A.
Ans. 
Given that: sin A + sin 2A + sin 3A = 3
Since the maximum value of sin A is 1 but for sin 2A
and sin 3A it is not equal to 1. So it is not possible.
Hence, the given statement is ‘False’.

Q.70. sin 10° is greater than cos 10°.

Ans. 
If sin 10° > cos 10°
⇒ sin 10° > cos (90° – 80°)
⇒sin 10° > sin 80°
which is not possible.
Hence, the statement is ‘False’.

Q.71. NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. 
 L.H.S. NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= cos 24°.cos 48°.cos 96°.cos 192°
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce[(2 sin 24 cos 24 )(2 cos 48 )(2 cos 96 )(2 cos 192 )]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce[sin 48 .2 cos 48 (2 cos 96 )(2 cos 192 )]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce[2 sin 48 cos 48 (2 cos 96 )(2 cos 192 )]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce[sin 96 (2 cos 96 )(2 cos 192 )]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce[2 sin 96 . cos 96 (2 cos 192 )]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce [sin 192 .(2 cos 192 )]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce2 sin 192 cos 192
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce [∵ sin (360° + θ) = sin θ]
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce R.H.S.
Hence, the given statement is ‘True’.

Q.72. One value of θ which satisfies the equation sin4 θ – 2sin2 θ – 1 lies between 0 and 2π.
Ans. Given equation is
sin4 θ – 2 sin2 θ – 1 = 0
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
= 1 ± √2
∴ sin2 θ = (1 + √2 ) or (1 - √2 )
⇒ - 1 ≤ sin q ≤ 1
⇒ sin2 θ ≤  1 but sin2 θ = (1 + √2 ) or (1 - √2 )
Which is not possible.
Hence, the given statement is ‘False’.

Q.73. If cosec x = 1 + cot x then x = 2nπ, 2nπ +NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans. 
Given that: cosec x = 1 + cot x
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ sin x + cos x = 1
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
or NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the given statement is ‘True’.

Q.74. If tan θ + tan 2θ + √3 tan θ tan 2θ = √3 , then NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that:tan θ + tan 2θ + √3 tan θ tan 2θ = √3
⇒ tan θ + tan 2θ = √3 - √3 tan θ tan 2θ
⇒ tan θ + tan 2θ = √3 (1 - tan θ tan 2θ)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
⇒ tan (θ + 2θ) = √3
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
So NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the given statement is ‘True’.

Q.75. If tan (π cosθ) = cot (π sinθ), thenNCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: tan (π cos θ) = cot (π sin θ)
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
Hence, the given statement is ‘True’.

Q.76. In the following match each item given under the column C1 to its correct answer given under the column C2 :

(a) sin (x + y) sin (x – y)
(i) cos2 x – sin2 y
(b) cos (x + y) cos (x – y) 
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce 
 (iv) sin2 x – sin2 y

Ans. 
(a) sin (x + y) sin (x  y) = sin2 x  sin2 y
 (a)↔(iv)
(b) cos (x + y) cos (x  y) = cos2 x  cos2 y
 (b)  (i)
(c) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 (c)  (ii)
(d) NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce
 (d)  (iii)
Hence,
(a)  (iv)
(b) ↔ (i)
(c) ↔ (ii)
(d) ↔ (iii).

The document NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce is a part of the Commerce Course Mathematics (Maths) Class 11.
All you need of Commerce at this link: Commerce
75 videos|238 docs|91 tests

Top Courses for Commerce

FAQs on NCERT Exemplar: Trigonometric Functions - Mathematics (Maths) Class 11 - Commerce

1. What are trigonometric functions?
Ans. Trigonometric functions are mathematical functions that relate the angles of a triangle to the lengths of its sides. They include sine, cosine, tangent, cosecant, secant, and cotangent.
2. How are trigonometric functions used in real life?
Ans. Trigonometric functions are used in various real-life applications such as engineering, architecture, navigation, physics, and computer graphics. They help in calculating distances, angles, heights, and solving problems related to waves, vibrations, and periodic phenomena.
3. What is the unit circle in trigonometry?
Ans. The unit circle is a circle with a radius of 1 unit, centered at the origin of a coordinate system. It is widely used in trigonometry to define the values of trigonometric functions for any angle. The coordinates on the unit circle correspond to the cosine and sine values of the angles.
4. How do trigonometric functions relate to right triangles?
Ans. Trigonometric functions are primarily defined and used in right triangles. In a right triangle, the sine of an angle is the ratio of the length of the side opposite the angle to the hypotenuse. The cosine is the ratio of the length of the adjacent side to the hypotenuse, and the tangent is the ratio of the opposite side to the adjacent side.
5. How are trigonometric functions related to periodicity?
Ans. Trigonometric functions are periodic functions, meaning they repeat their values after a certain interval. For example, the sine and cosine functions have a period of 2π radians or 360 degrees. This periodicity is essential in analyzing and modeling periodic phenomena like waves, sound, and oscillations.
75 videos|238 docs|91 tests
Download as PDF
Explore Courses for Commerce exam

Top Courses for Commerce

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

mock tests for examination

,

Summary

,

MCQs

,

shortcuts and tricks

,

Extra Questions

,

Viva Questions

,

Semester Notes

,

video lectures

,

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

,

ppt

,

Sample Paper

,

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

,

past year papers

,

Free

,

Exam

,

Objective type Questions

,

pdf

,

study material

,

Important questions

,

practice quizzes

,

Previous Year Questions with Solutions

,

NCERT Exemplar: Trigonometric Functions | Mathematics (Maths) Class 11 - Commerce

;