Q.1. Find the maximum area bounded by the curves y2 = 4ax, y = ax and y = x / a (1 ≤ a ≤ 2).
Ans. 84
The curves are y2 = 4ax and y = ax
At their point of intersection
a2x2 = 4ax
⇒ ax = 4, x = 0
x = 4 / a
⇒ y = 4
i. e.
Similarly for y2 = 4ax and y = x / a ,
⇒ x = 4a3
⇒ B(4a3, 4a2)
Area OAB =
∴
= 84
Q.2. Let f be a real valued function satisfying and Find the area bounded by the curve y = f(x), the y–axis and the line y = 3.
Ans. 3
Given,
putting x = y =1, we get f(1) = 0
Now,
=
⇒ f'(x) = 3 x ⇒ f(x) = 3 lnx + c
Putting x =1 ⇒ c = 0 ⇒ f(x) = 3lnx = y (say)
Required Area =
= 3(e – 0) = 3e sq. units.
Q.3. is equal to
Ans. 0
Given Limit =
=
Q.4. The value of ,where [.] denotes the greatest integer function, is equal to;
Ans. 12
Let I =
= 1/3 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) = 12.
Q.5. If , then the value od P + Q + R is________.
Ans. 10
Put x + 7 = u4 ⇒ dx = 4u3 du
⇒
Rearranging like terms
⇒ P = 2, Q = 4, R = 4
⇒ P + Q + R = 10.
Q.6. If , then k is equal s.
Ans. 1
Dividing the numerator and denominator by x2, the given integral becomes
Let
Hence k = 1.
Q.7. The value of is ____________.
Ans. 9
Q.8. If , then where k has the value equal to?
Ans. 9
⇒
⇒
⇒
⇒ k = 9
Q.9. Value of is equal to?
Ans. 1
⇒
= 1
Q.10. Let f be a function defined by , where r = 3k, k∈ I then is equal to?
Ans. 5
Hence, f(x) is periodic with fundamental time period = 3
= 50
⇒
= 5
446 docs|930 tests
|
|
Explore Courses for JEE exam
|