Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Important Formulas: Coordinate Geometry

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10 PDF Download

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

Points on a Cartesian Plane

A pair of numbers locate points on a plane called the coordinates. The distance of a point from the y-axis is known as abscissa or x-coordinate. The distance of a point from the x-axis is called ordinate or y-coordinate.

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

Example: Consider a point P(3, 2), where 3 is the abscissa, and 2 is the ordinate. 3 represents the distance of point P from the y-axis, and 2 represents the distance of point P from the x-axis.

Distance Formula

Distance between Two Points on the Same Coordinate Axes

The distance between two points that are on the same axis (x-axis or y-axis) is given by the difference between their ordinates if they are on the y-axis, else by the difference between their abscissa if they are on the x-axis.

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

Distance AB = 6 – (-2) = 8 units
Distance CD = 4 – (-8) = 12 units

Distance between Two Points Using Pythagoras Theorem

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

Let P(x1, y1) and Q(x2, y2) be any two points on the cartesian plane.
Draw lines parallel to the axes through P and Q to meet at T.
ΔPTQ is right-angled at T.
By Pythagoras Theorem,
PQ2 = PT2 + QT2
= (x2 – x1)+ (y2 – y1)2
PQ = √[x2 – x1)+ (y2 – y1)2]

Distance Formula: Distance between any two points (x1, y1) and (x2, y2) is given by

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10Where d is the distance between the points (x1,y1) and (x2,y2).

Section Formula

If the point P(x, y) divides the line segment joining A(x1, y1) and B(x2, y2) internally in the ratio m1:m2, then, the coordinates of P are given by the section formula as:

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

This doc is part of
127 videos|551 docs|75 tests
Join course for free

Finding Ratio given the points

To find the ratio in which a given point P(x, y) divides the line segment joining A(x1, y1) and B(x2, y2),

  • Assume that the ratio is k : 1
  • Substitute the ratio in the section formula for any of the coordinates to get the value of k.Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10When x1, x2 and x are known, k can be calculated. The same can be calculated from the y- coordinate also.

Example: Find the ratio when point (– 4, 6) divide the line segment joining the points A(– 6, 10) and B(3, – 8)?
Solution: Let the ratio be m:n.
We can write the ratio as:
m/n : 1 or k:1
Suppose (-4, 6) divide the line segment AB in k:1 ratio.
Now using the section formula, we have the following;

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10
-4 = (3k-6)/(k+1)
– 4k – 4 = 3k – 6
7k =2
k:1 = 2:7
Thus, the required ratio is 2:7.

Midpoint

The midpoint of any line segment divides it in the ratio 1:1.

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

The coordinates of the midpoint(P) of line segment joining A(x1, y1) and B(x2, y2) is given by 
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

Example: What is the midpoint of line segment PQ whose coordinates are P (-3, 3) and Q (1, 4), respectively.
Solution:
Given,  P (-3, 3) and Q (1, 4) are the points of line segment PQ.
Using midpoint formula, we have;
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10
= (-2/2, 1/2)
= (-1, 1/2)

Download the notes
Important Formulas: Coordinate Geometry
Download as PDF
Download as PDF

Points of Trisection

To find the points of trisection P and Q, which divides the line segment joining A(x1, y1) and B(x2, y2) into three equal parts:
i) AP : PB = 1 : 2
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

ii) AQ : QB = 2 : 1 
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

Example: Find the coordinates of the points of trisection of the line segment joining the points A(2, – 2) and B(– 7, 4).
Solution: Let P and Q divide the line segment AB into three parts.
So, P and Q are the points of trisection here.
Let P divides AB in 1:2, thus by section formula, the coordinates of P are (1, 0)
Let Q divides AB in 2:1 ratio, then by section formula, the coordinates are (-4,2)
Thus, the point of trisection for line segment AB are (1,0) and (-4,2).

Centroid of a Triangle

If A(x1, y1), B(x2, y2), and C(x3, y3) are the vertices of a ΔABC, then the coordinates of its centroid(P) are given by
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

Example: Find the coordinates of the centroid of a triangle whose vertices are given as (-1, -3), (2, 1) and (8, -4)
Solution: Given,
The coordinates of the vertices of a triangle are (-1, -3), (2, 1) and (8, -4)
The Centroid of a triangle is given by:
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10Therefore, the centroid of a triangle, G = (3, -2)

Take a Practice Test
Test yourself on topics from Class 10 exam
Practice Now
Practice Now

Area from Coordinates

Area of a Triangle given its vertices

If A(x1, y1), B(x2, y2) and C(x3, y3) are the vertices of a Δ ABC, then its area is given by
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10Where A is the area of the Δ ABC.

Example: Find the area of the triangle ABC whose vertices are A(1, 2), B(4, 2) and C(3, 5).
Solution:
Using the formula given above,
Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10Area = 9/2 square units.
Therefore, the area of a triangle ABC is 9/2 square units.
To know more about the Area of a Triangle,

Collinearity Condition

If three points A, B and C are collinear and B lies between A and C, then,

  • AB + BC = AC. AB, BC, and AC can be calculated using the distance formula.
  • The ratio in which B divides AC, calculated using the section formula for both the x and y coordinates separately, will be equal.
  • The area of a triangle formed by three collinear points is zero.
The document Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10 is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
Are you preparing for Class 10 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 10 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
127 videos|551 docs|75 tests

Up next

FAQs on Important Formulas: Coordinate Geometry - Mathematics (Maths) Class 10

1. What is the distance formula used to calculate the distance between two points on a Cartesian plane?
Ans. The distance formula to calculate the distance \(d\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) on a Cartesian plane is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
2. How do you find the midpoint of a line segment between two points?
Ans. The midpoint \((M)\) of a line segment between two points \((x_1, y_1)\) and \((x_2, y_2)\) can be calculated using the midpoint formula: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \]
3. What is the section formula and how is it used to find the coordinates of a point dividing a line segment in a given ratio?
Ans. The section formula helps find the coordinates of a point \(P\) dividing the line segment joining points \((x_1, y_1)\) and \((x_2, y_2)\) in the ratio \(m:n\). The coordinates of point \(P\) are given by: \[ P = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \]
4. What is the condition for three points to be collinear on a Cartesian plane?
Ans. Three points \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) are collinear if the area formed by these points is zero. This can be determined using the determinant: \[ \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix} = 0 \]
5. How can I find the centroid of a triangle given its vertices?
Ans. The centroid \(G\) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) can be calculated using the formula: \[ G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \]
127 videos|551 docs|75 tests
Download as PDF

Up next

Explore Courses for Class 10 exam
Related Searches

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

,

video lectures

,

Objective type Questions

,

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

,

mock tests for examination

,

Free

,

Viva Questions

,

Important Formulas: Coordinate Geometry | Mathematics (Maths) Class 10

,

Summary

,

Semester Notes

,

MCQs

,

past year papers

,

Previous Year Questions with Solutions

,

study material

,

Important questions

,

Extra Questions

,

Exam

,

practice quizzes

,

pdf

,

Sample Paper

,

shortcuts and tricks

,

ppt

;