Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Short Notes: Quadratic Equations

Quadratic Equations Class 10 Notes Maths Chapter 4

What is Quadratic Equation?

  • A quadratic polynomial of the form ax2 + bx + c, where a ≠ 0 and a, b, c are real numbers, is called a quadratic equation when ax2 + bx + c = 0.

Quadratic Equations Class 10 Notes Maths Chapter 4

  • Here a and b are the coefficients of x2 and x respectively and ‘c’ is a constant term.
  • Any value is a solution of a quadratic equation if and only if it satisfies the quadratic equation.

How to Find the Solution of a Quadratic Equation by Factorisation?

For a quadratic equation, a real number α is called the root of a quadratic equation ax+ bx + c = 0. Hence, we can write aα2 + bα + c = 0. So, x= α is the solution of a quadratic equation or the root of a quadratic equation. In other words, α satisfies the given quadratic equation.

Note: The zeros of the quadratic equation ax2+bx+c = 0 are the same as the root of the quadratic equation ax2+bx+c = 0.

Example: Solve the quadratic equation 2x2+x-300 = 0 by the factorisation method.

Solution: 

Given quadratic equation: 2x2+x-300 = 0

By using factorisation, the quadratic equation 2x+ x -300 = 0 is written as:

2x2 – 24x+25x -300 = 0

2x(x-12) +25(x-12) =0

(i.e) (x-12)(2x+25) = 0

Therefore, x-12=0 and 2x+25 = 0

x-12 = 0

Therefore, x= 12.

Similarly, 2x+25 = 0

2x= -25

x =-25/2

x = -12.5.

Hence, the roots of the quadratic equation 2x2+x-300 = 0 are 12 and -12.5.

Question for Short Notes: Quadratic Equations
Try yourself:Which of the following is true about the roots of the quadratic equation ax2 + bx + c = 0?
View Solution

RS Aggarwal Test: Quadratic Equations
Start Test
Start Test

Quadratic Formula 

  • The roots, if a quadratic equation ax2 + bx + c = 0 are given by:

Quadratic Equations Class 10 Notes Maths Chapter 4

  • Here, the value b2 – 4ac is known as the discriminant and is generally denoted by D. ‘D’ helps us to determine the nature of roots for a given quadratic equation. Thus D = b2 – 4ac.

Example: Find the roots of quadratic equation x2 - 7x + 10 = 0 using quadratic formula.

Solution: 

Here, a = 1, b = -7 and c = 10. Then by quadratic formula:

Quadratic Equations Class 10 Notes Maths Chapter 4

Therefore, x = 2, x = 5.

This doc is part of
127 videos|550 docs|75 tests
Join course for free

Nature of Roots of a Quadratic Equation

  • If D = 0 ⇒ The roots are Real and Equal.
  • If D > 0 ⇒ The two roots are Real and Unequal.
  • If D < 0 ⇒ No Real roots exist.

Example: Discuss the nature of the roots of the quadratic equation 2x2 – 8x + 3 = 0.

Solution: Here the coefficients are all rational. The discriminant D of the given equation is

D = b2 – 4ac = (-8)2 – 4 x 2 x 3

= 64 – 24

= 40 > 0

Clearly, the discriminant of the given quadratic equation is positive but not a perfect square. Therefore, the roots of the given quadratic equation are real, irrational and unequal.

Download the notes
Short Notes: Quadratic Equations
Download as PDF
Download as PDF

Relationship between roots and Coefficients of Quadratic Equation

If α and β are the roots of the quadratic equation, then Quadratic equation is 

x2 – (α + β) x + αβ = 0 

OR

 x2 – (sum of roots) x + product of roots = 0

where,

  • Sum of roots (α + β) = Quadratic Equations Class 10 Notes Maths Chapter 4
  • Product of roots (α x β) = Quadratic Equations Class 10 Notes Maths Chapter 4

Example: If α and β are the roots of the equation x2 - 4x + 2 = 0, find the value of

i) α2 + β2

ii) α2 - β2

iii) α3 - β3

iv)1/α  + 1/ β

Solution:

The given equation is x2 - 4x + 2 = 0 ...................... (i)

According to the problem, α and β are the roots of the equation (i)

Therefore,

Quadratic Equations Class 10 Notes Maths Chapter 4

(i) Now α2 + β2 = (α + β)2 - 2αβ = (4)2 – 2 x 2 = 16 – 4 = 12.

(ii) α2 - β2 = (α + β)( α - β)

Now (α - β)2 = (α + β)2 - 4αβ = (4)2 – 4 x 2 = 16 – 8 = 8

⇒ α - β = ± √8

⇒ α - β = ± 2√2

Therefore, α2 - β2 = (α + β)( α - β) = 4 x (± 2√2) = ± 8√2.

(iii) α3 + β3 = (α + β)3 - 3αβ(α + β) = (4)3 – 3 x 2 x 4 = 64 – 24 = 40.

(iv) Quadratic Equations Class 10 Notes Maths Chapter 4

The document Quadratic Equations Class 10 Notes Maths Chapter 4 is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
Are you preparing for Class 10 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 10 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
127 videos|550 docs|75 tests

Up next

FAQs on Quadratic Equations Class 10 Notes Maths Chapter 4

1. What is a quadratic equation?
2. How can I find the solutions of a quadratic equation by factorization?
Ans. To find the solutions of a quadratic equation by factorization, follow these steps: 1. Rewrite the equation in the standard form \( ax^2 + bx + c = 0 \). 2. Factor the quadratic expression on the left side into the form \( (px + q)(rx + s) = 0 \). 3. Set each factor equal to zero: \( px + q = 0 \) and \( rx + s = 0 \). 4. Solve these equations to find the values of \( x \), which are the roots of the quadratic equation.
3. What is the quadratic formula?
Ans. The quadratic formula is a method for finding the roots of a quadratic equation, given by the expression \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a \), \( b \), and \( c \) are the coefficients from the quadratic equation \( ax^2 + bx + c = 0 \). The term under the square root, \( b^2 - 4ac \), is called the discriminant and helps determine the nature of the roots.
4. How can I determine the nature of the roots of a quadratic equation?
Ans. The nature of the roots of a quadratic equation can be determined using the discriminant \( D = b^2 - 4ac \): - If \( D > 0 \), there are two distinct real roots. - If \( D = 0 \), there is one real root (a repeated root). - If \( D < 0 \), there are no real roots (the roots are complex).
5. What is the relationship between the roots and coefficients of a quadratic equation?
Ans. The relationship between the roots (let's call them \( r_1 \) and \( r_2 \)) and the coefficients of a quadratic equation \( ax^2 + bx + c = 0 \) is given by Vieta's formulas: 1. The sum of the roots \( r_1 + r_2 = -\frac{b}{a} \). 2. The product of the roots \( r_1 \cdot r_2 = \frac{c}{a} \). This means that you can find the roots using the coefficients of the equation.
127 videos|550 docs|75 tests
Download as PDF

Up next

Explore Courses for Class 10 exam
Related Searches

Sample Paper

,

Quadratic Equations Class 10 Notes Maths Chapter 4

,

Important questions

,

Previous Year Questions with Solutions

,

video lectures

,

ppt

,

shortcuts and tricks

,

Quadratic Equations Class 10 Notes Maths Chapter 4

,

study material

,

pdf

,

Extra Questions

,

mock tests for examination

,

MCQs

,

Free

,

Quadratic Equations Class 10 Notes Maths Chapter 4

,

Summary

,

practice quizzes

,

Exam

,

past year papers

,

Objective type Questions

,

Viva Questions

,

Semester Notes

;