UPSC Exam  >  UPSC Notes  >  Physics Optional Notes for UPSC  >  Galilean Transformation

Galilean Transformation | Physics Optional Notes for UPSC PDF Download

Introduction

In Newtonian mechanics, a Galilean transformation is applied to convert the coordinates of two frames of reference, which vary only by constant relative motion within the constraints of classical physics.

The Galilean group is the collection of motions that apply to Galilean or classical relativity. It is relevant to the four space and time dimensions establishing Galilean geometry.

These transformations make up the Galilean group (inhomogeneous) with spatial rotations and translations in space and time. The homogeneous Galilean group does not include translation in space and time.

In the case of special relativity, inhomogeneous and homogeneous Galilean transformations are substituted by Poincaré transformations and Lorentz transformations, respectively.
Galilean Transformation | Physics Optional Notes for UPSC

The Galilean transformation equations are only valid in a Newtonian framework and are not at all valid to coordinate systems moving with respect to each other around the speed of light.

Galilean Invariance

Galilean invariance or relativity postulates that the laws governing all fundamental motions are the same in all inertial frames. Galileo derived these postulates using the case of a ship moving at a constant velocity on a calm sea. Any viewer under the deck would not be able to deduce the state of motion in which the ship is at.

Specifically, the term Galilean invariance usually refers to Newtonian mechanics. Under this transformation, Newton’s laws stand true in all frames related to one another.

Consequences of Galilean Relativity

  • The basic laws of physics are the same in all reference points, which move in constant velocity with respect to one another.
  • All inertial frames share a common time.

Galilean Transformation | Physics Optional Notes for UPSC

Galilean Transformation Equations

These equations explain the connection under the Galilean transformation between the coordinates (x, y, z, t) and (x’, y’, z’, t’) of a single random event. It is calculated in two coordinate systems
S and S’, in constant relative motion (velocity v) in their shared x and x’ directions, with their coordinate origins meeting at time t = t’ = 0.
x’ = x = vt
y’ = y
z’ = z
t’ = t

In the grammar of linear algebra, this transformation is viewed as a shear mapping and is stated with a matrix on a vector. With motion parallel to the x-axis, the transformation works on only two elements.
Galilean Transformation | Physics Optional Notes for UPSC

Even though matrix depictions are not strictly essential for Galilean transformation, they lend the ways for direct comparison to transformation methodologies in special relativity.

Galilean and Lorentz Transformation

Galilean and Lorentz transformations are similar in some conditions.

At lesser speeds than the light speed, the Galilean transformation of the wave equation is just a rough calculation of Lorentz transformations. Electromagnetic waves (propagate with the speed of light) work on the basis of Lorentz transformations. It is fundamentally applicable in the realms of special relativity. In contrast, Galilean transformations cannot produce accurate results when objects or systems travel at speeds near the speed of light.

  • In the case of two observers, equations of the Lorentz transformation are
    • x’ = y(x – vt)
    • y’ = y
    • z’ = z
    • t’ = y(t – vx/c2)
    • where, {c = light speed}
    • y = 1/(1 – v2/c2)1/2
  • As per these transformations, there is no universal time. Time changes according to the speed of the observer. Due to these weird results, effects of time and length vary at different speeds.
  • Galilean transformations are estimations of Lorentz transformations for speeds far less than the speed of light.
  • Lorentz transformations are applicable for any speed. Galilean transformations are not relevant in the realms of special relativity and quantum mechanics.
  • As per Galilean transformation, time is constant or universal. It does not depend on the observer. On the other hand, time is relative in the Lorentz transformation.

Limitations of Galilean Transformations

There are the following cases that could not be decoded by Galilean transformation:

  • Galilean Transformation cannot decipher the actual findings of the Michelson-Morley experiment.
  • It breaches the rules of the Special theory of relativity.
  • In Maxwell’s electromagnetic theory, the speed of light (in vacuum) is constant in all scenarios. But in Galilean transformations, the speed of light is always relative to the motion and reference points. It will be varying in different directions.
The document Galilean Transformation | Physics Optional Notes for UPSC is a part of the UPSC Course Physics Optional Notes for UPSC.
All you need of UPSC at this link: UPSC
134 docs

FAQs on Galilean Transformation - Physics Optional Notes for UPSC

1. What is Galilean Invariance?
Ans.Galilean Invariance is the principle that the laws of motion are the same in all inertial frames of reference. This means that if two observers are moving at constant speeds relative to each other, they will agree on the outcomes of experiments conducted in their respective frames, although they may disagree on the measurements of time and space.
2. What are Galilean Transformation Equations?
Ans.Galilean Transformation Equations are mathematical formulas used to relate the coordinates and time measurements of events as observed in two different inertial frames. They are given by: - x' = x - vt - y' = y - z' = z - t' = t where (x', y', z', t') are the coordinates in the moving frame, (x, y, z, t) are the coordinates in the stationary frame, and v is the relative velocity between the two frames.
3. How do Galilean Transformations differ from Lorentz Transformations?
Ans.Galilean Transformations apply to situations where speeds are much less than the speed of light, assuming time is absolute and not affected by motion. In contrast, Lorentz Transformations account for the effects of relativity, particularly at speeds close to the speed of light, where time dilation and length contraction occur, leading to different calculations of time and space.
4. What are the limitations of Galilean Transformations?
Ans.The limitations of Galilean Transformations include their inapplicability at high velocities, particularly those approaching the speed of light, where relativistic effects become significant. They also do not account for phenomena such as time dilation and length contraction, which are essential in understanding the behavior of objects in relative motion at high speeds.
5. Why are Galilean Transformations important in classical mechanics?
Ans.Galilean Transformations are important in classical mechanics because they provide a foundational understanding of how objects behave under motion in different inertial frames. They simplify the analysis of motion and are essential for deriving equations of motion in classical physics, making them a crucial concept for students and professionals in the field.
Related Searches

Galilean Transformation | Physics Optional Notes for UPSC

,

Important questions

,

Galilean Transformation | Physics Optional Notes for UPSC

,

video lectures

,

Viva Questions

,

pdf

,

Summary

,

mock tests for examination

,

ppt

,

study material

,

shortcuts and tricks

,

practice quizzes

,

Sample Paper

,

Semester Notes

,

Previous Year Questions with Solutions

,

MCQs

,

Free

,

Galilean Transformation | Physics Optional Notes for UPSC

,

Extra Questions

,

past year papers

,

Objective type Questions

,

Exam

;