CLAT Exam  >  CLAT Notes  >  Quantitative Techniques for CLAT  >  Ratio And Proportion

Ratio And Proportion | Quantitative Techniques for CLAT PDF Download

Ratio And Proportion | Quantitative Techniques for CLAT

Ratio

In certain situations, the comparison of two quantities by the method of division is very efficient. We can say that the comparison or simplified form of two quantities of the same kind is referred to as a ratio. This relation gives us how many times one quantity is equal to the other quantity. In simple words, the ratio is the number that can be used to express one quantity as a fraction of the other ones.
The two numbers in a ratio can only be compared when they have the same unit. We make use of ratios to compare two things. The sign used to denote a ratio is ‘:’.
A ratio can be written as a fraction, say 2/5. We happen to see various comparisons or say ratios in our daily life.
Hence, the ratio can be represented in three different forms, such as:

  • a to b
  • a : b
  • a/b

Notes

  • The ratio should exist between the quantities of the same kind.
  • While comparing two things, the units should be similar.
  • There should be significant order of terms.
  • The comparison of two ratios can be performed, if the ratios are equivalent like the fractions.

Proportion

Proportion is an equation that defines that the two given ratios are equivalent to each other. In other words, the proportion states the equality of the two fractions or the ratios. In proportion, if two sets of given numbers are increasing or decreasing in the same ratio, then the ratios are said to be directly proportional to each other.
For example, the time taken by train to cover 100km per hour is equal to the time taken by it to cover the distance of 500km for 5 hours. Such as 100km/hr = 500km/5hrs.
Ratio and proportions are said to be faces of the same coin. When two ratios are equal in value, then they are said to be in proportion. In simple words, it compares two ratios. Proportions are denoted by the symbol  ‘::’ or ‘=’.
The proportion can be classified into the following categories, such as:

  • Direct Proportion
  • Inverse Proportion
  • Continued Proportion

Direct Proportion

The direct proportion describes the relationship between two quantities, in which the increases in one quantity, there is an increase in the other quantity also. Similarly, if one quantity decreases, the other quantity also decreases. Hence, if “a” and “b” are two quantities, then the direction proportion is written as a ∝ b.

Inverse Proportion

The inverse proportion describes the relationship between two quantities in which an increase in one quantity leads to a decrease in the other quantity. Similarly, if there is a decrease in one quantity, there is an increase in the other quantity. Therefore, the inverse proportion of two quantities, say “a” and “b” is represented by a ∝ (1/b).

Continued Proportion

Consider two ratios to be a : b and c : d.
Then in order to find the continued proportion for the two given ratio terms, we convert the means to a single term/number. This would, in general, be the LCM of means.
For the given ratio, the LCM of b & c will be bc.
Thus, multiplying the first ratio by c and the second ratio by b, we have
First ratio- ca : bc
Second ratio- bc : bd
Thus, the continued proportion can be written in the form of ca : bc : bd

Ratio Formula

Assume that, we have two quantities (or two numbers or two entities) and we have to find the ratio of these two, then the formula for ratio is defined as;
a : b ⇒ a/b
where a and b could be any two quantities.
Here, “a” is called the first term or antecedent, and “b” is called the second term or consequent.
Example: In ratio 4 : 9, is represented by 4/9, where 4 is antecedent and 9 is consequent.
If we multiply and divide each term of ratio by the same number (non-zero), it doesn’t affect the ratio.
Example: 4 : 9 = 8 : 18 = 12 : 27

Proportion Formula

Now, let us assume that, in proportion, the two ratios are a:b & c:d. The two terms ‘b’ and ‘c’ are called ‘means or mean term,’ whereas the terms ‘a’ and ‘d’ are known as ‘extremes or extreme terms.’
a/b = c/d or a : b :: c : d
Example: Let us consider one more example of a number of students in a classroom. Our first ratio of the number of girls to boys is 3:5 and that of the other is 4:8, then the proportion can be written as:
3 : 5 ::  4 : 8 or 3/5 = 4/8
Here, 3 & 8 are the extremes, while 5 & 4 are the means.

Note: The ratio value does not affect when the same non-zero number is multiplied or divided on each term.

Difference Between Ratio and Proportion

Ratio And Proportion | Quantitative Techniques for CLAT

Some Useful Results on Proportion 

If a, b, c and d are four quantities. then,
(i) a:b :: c:d means b:a :: d:c  (invertendo)
(ii) a:b :: c:d means a:c :: b:d (Alternando)
(iii) a:b :: c:d means (a+b) : b :: (c+d) : d (Componendo)
(iv) a:b :: c:d means (a - b) : b :: (c - d) :d (dividendo)
(v) If a:b :: c:d then (a + b) : (a – b) :: (c + d) : (c – d) (componendo and dividendo)
(vi) If a:b :: c:d then a: (a – b) :: c : (c – d) (convertendo)

Some Useful Result for Proportional Division

  • The process of dividing a given quantity into parts which are proportional to a given ratio is called proportional division and the resultant quantities obtained are called proportional parts. 
  • For example: If 240 is to be divided in the ratio 3:4:5 60, 80 and 100 will be the proportional part since the ratio of these quantities is 3:4:5 and their sum is 240.

Method of Finding Proportional Part

If a quantity P is to be divided in the ratio of a:b:c and the resultant proportional parts are x, y and z then,
x = ka, y = kb and z = kc
Now, P = x + y +z
or ka + kb + kc = P
or  Ratio And Proportion | Quantitative Techniques for CLAT
Proportional part
Ratio And Proportion | Quantitative Techniques for CLAT
So, to calculate the proportional parts:
(a) Given quantity is divided by the sum of ratios.
(b) The quotient so obtained is multiplied by the respective numbers of the given ratio.
(c) The resultants will be the required proportional parts.
For example: Divide 2700 in the ratio 2:3:4
Sum of the ratio = 2 + 3 + 4 = 9
First part = Ratio And Proportion | Quantitative Techniques for CLAT  = 300 x 2 = 600
Second part = Ratio And Proportion | Quantitative Techniques for CLAT = 300 x 3 = 900
Third part =Ratio And Proportion | Quantitative Techniques for CLAT = 300 x 4 = 1200


Example 1: If 38% of A = 52% of B then A : B = ?
Solution: It means A x Ratio And Proportion | Quantitative Techniques for CLAT
or 38 A = 52 B or Ratio And Proportion | Quantitative Techniques for CLAT . So A : B = 26:19


Example 2: The salaries of A, B and C are in the ratio 3:5:7. If their salaries are increased by 50%, 60% and 50% respectively, the ratio between new salaries is
Solution: After increase of 50% Salary of A is 3 X Ratio And Proportion | Quantitative Techniques for CLAT
After increase of 60% of salary of B is = Ratio And Proportion | Quantitative Techniques for CLAT 
After increase of 50% salary of C is Ratio And Proportion | Quantitative Techniques for CLAT
Ratio between the new salaries of A, B and C is
Ratio And Proportion | Quantitative Techniques for CLAT
or 45:80:105      or 9:16:21

Question for Ratio And Proportion
Try yourself:In a school, 10% of the boys are the same in number as 1/4th of the girls. What is the ratio of the boys to girls in that school?
View Solution


Example 3: The speed of three Cars is in the ratio of 3:4:5. The ratio between the time taken by them to travel a fixed distance is
Solution: Let fixed distance be d  
Time taken by first car is Ratio And Proportion | Quantitative Techniques for CLAT
Time taken by second car is Ratio And Proportion | Quantitative Techniques for CLAT
Time taken by 3rd car is = Ratio And Proportion | Quantitative Techniques for CLAT
So ratio of time between three cars is
Ratio And Proportion | Quantitative Techniques for CLAT
or ratio is  
Ratio And Proportion | Quantitative Techniques for CLAT
or Ratio And Proportion | Quantitative Techniques for CLAT
20 : 15 : 12


Example 4: A mixture contains alcohol and water in the ratio 3:2. On adding 5 litre of water in it, the quantities of alcohol and water become equal. What is the quantity of alcohol in the mixture.
Solution: Ratio of alcohol to water is 3 : 2. If 3 litre is alcohol then 2 litre is water
If we add one litre of water the quantity of alcohol and water become equal
So if on adding 1 litre of water quantities become equal then quantity of alcohol is 3 litre
If on adding 5 litre they become equal then alcohol is 3 x 5 = 15 litre.


Example 5:Two metals contain zinc and copper in the ratio 2:1 and 4:1 respectively. In what ratio these two must be mixed to get a new metal containing zinc and copper in the ratio 3 : 1
Solution: By the method of allegation and mixture
Ratio And Proportion | Quantitative Techniques for CLAT
By the method of allegation and mixture:
The reqd. ratio is Ratio And Proportion | Quantitative Techniques for CLAT
Or 3:5 [multiply by 60]


Example 6: Mean proportional between 104 and 234 is
Solution:  Mean proportional is Ratio And Proportion | Quantitative Techniques for CLAT
= 2 x 2 x 3 x 13 = 156


Example 7: There are three partners A, B and c in a firm. A’s capital is equal to thrice of B’s and B’s capital is 4 times C’s capital. Find the ratio of the capital of A, B and C
Solution: Given is A = 3B
and B = 4c
so A = 3B = 3 x 4c
So Ratio And Proportion | Quantitative Techniques for CLAT
So Ratio of A : B : C is 12 : 4 : 1


Example 8: In a mixture of 75 litres, the ratio of milk to water is 2:1. How much water should be added in the mixture so that the ratio of milk to water is 1 : 2
Solution: Ratio of milk to water is 2 : 1
In 75 litres milk is 50 and water is 25 i.e. 50:25
We want to make the ratio as 1 : 2 i.e 50 : 100.
Since the milk in two ratios is 50 each and we want to convert 25 water to 100 water. So 75 litres of water be add.

Question for Ratio And Proportion
Try yourself:Four milk men rented a pasture. A grazed 18 cows for 4 months B 25 cows for 2 months, C 28 cows for 5 months and D 21 cows for 3 months. If A’s share of rent is Rs 360, total rent of the field is
Check
View Solution

The document Ratio And Proportion | Quantitative Techniques for CLAT is a part of the CLAT Course Quantitative Techniques for CLAT.
All you need of CLAT at this link: CLAT
56 videos|104 docs|95 tests

Top Courses for CLAT

FAQs on Ratio And Proportion - Quantitative Techniques for CLAT

1. What is the difference between a ratio and a proportion?
Ans. A ratio is a comparison of two quantities, while a proportion is an equation that states that two ratios are equal.
2. How can ratios be used in real-life situations?
Ans. Ratios can be used in various real-life situations such as scaling recipes, calculating distances on a map, and determining the aspect ratio of a TV or computer screen.
3. How do you find the missing term in a proportion?
Ans. To find the missing term in a proportion, you can use cross-multiplication. Multiply the extremes (the first and last terms) and then multiply the means (the second and third terms). Set these two products equal to each other and solve for the missing term.
4. Can ratios be simplified?
Ans. Yes, ratios can be simplified by dividing both the numerator and denominator by their greatest common divisor. Simplifying ratios helps in making them easier to work with and compare.
5. What is the importance of understanding ratios and proportions in mathematics?
Ans. Understanding ratios and proportions is crucial in mathematics as they are used to solve a wide range of problems. They help in making comparisons, solving proportions, and establishing relationships between quantities, which are fundamental skills in various fields such as finance, science, and engineering.
56 videos|104 docs|95 tests
Download as PDF
Explore Courses for CLAT exam

Top Courses for CLAT

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Important questions

,

Ratio And Proportion | Quantitative Techniques for CLAT

,

Viva Questions

,

pdf

,

Summary

,

ppt

,

Objective type Questions

,

Semester Notes

,

Ratio And Proportion | Quantitative Techniques for CLAT

,

study material

,

practice quizzes

,

past year papers

,

Sample Paper

,

mock tests for examination

,

shortcuts and tricks

,

video lectures

,

Extra Questions

,

Ratio And Proportion | Quantitative Techniques for CLAT

,

Exam

,

Free

,

MCQs

,

Previous Year Questions with Solutions

;