All Exams  >   JEE  >   Weekly Tests for JEE Preparation  >   All Questions

All questions of July Week 4 for JEE Exam

A particle of charge 1.6 x 10-19 C and mass 1.8 x 10-27 kg is moving around the path of radius 2 x 104 m with velocity 2.4 x 106 m/s. The magnetic field necessary is (in Wb/m²)​
  • a)
    13.5 x 10-6
  • b)
    135 x 10-6
  • c)
    0.135 x 10
  • d)
    1.35 x 10-6
Correct answer is option 'D'. Can you explain this answer?

Explanation:

When an electron is projected in a uniform electric field and a uniform magnetic field, both pointing in the same direction as the electron's velocity, the following happens:

1. Electric field:

The electric field exerts a force on the electron in the direction of the field. Since the electron is negatively charged, it experiences a force opposite to the direction of the electric field. Therefore, the electric field does not affect the direction of the electron's motion.

2. Magnetic field:

The magnetic field exerts a force on the electron perpendicular to both the field direction and the electron's velocity. The force is given by the Lorentz force equation:

F = q(v x B)

where F is the force, q is the charge of the electron, v is its velocity, and B is the magnetic field.

In this case, the force is directed inward, towards the center of the circular path. The magnitude of the force is given by:

|F| = qvB

where |F| is the magnitude of the force.

Since the force is perpendicular to the velocity, it causes the electron to move in a circular path around the magnetic field lines. The radius of the path is given by:

r = mv/qB

where r is the radius of the path, m is the mass of the electron, and v is its velocity.

3. Combined effect:

Since the electric field does not affect the direction of the electron's motion, the only effect is due to the magnetic field. As the electron moves in a circular path, it loses kinetic energy due to the work done by the magnetic force. Therefore, its velocity decreases in magnitude.

Hence, the correct option is D- The electron velocity will decrease in magnitude.

If 3 sin(xy) + 4 cos (xy) = 5, then   = .....
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Krishna Iyer answered
3sinxy + 4cosxy = 5
⇒ 5(3/5 sinxy + 4/5 cosxy) = 5 
⇒ (3/5 sinxy + 4/5 cosxy) = 1
now (3/5)²+(4/5)² = 1
    so let, 3/5 =   cosA
             ⇒ 4/5 = sinA
So , (3/5 sinxy + 4/5 cosxy) = 1
     ⇒ (cosAsinxy + sinAcosxy) = 1
     ⇒ sin(A+xy) = 1
     ⇒ A + xy = 2πk + π/2 (k is any integer)
     ⇒ sin⁻¹(4/5) + xy = 2πk + π/2
     differenciating both sides with respect to x
   0 + xdy/dx + y = 0
      dy/dx = -y/x

The force acting on a charge q moving with velocityin a magnetic field is given by
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'C'. Can you explain this answer?

Neha Sharma answered
The magnetic force on a free moving charge is perpendicular to both the velocity of the charge and the magnetic field with direction given by the right hand rule . The force is given by the charge times the vector product of velocity and magnetic field.

  • a)
  • b)
  • c)
  • d)
Correct answer is option 'A'. Can you explain this answer?

Sushil Kumar answered

now differentiate y with respect to x,
dy/dx = -{[x d/dx(1+x) - (1+x)dx/dx]}/(1+x2)
= -1/(1+x)2


Correct answer is option 'A'. Can you explain this answer?

Aryan Khanna answered
y = tan-1(1-cosx)/sinx
y = tan-1{2sin2(x/2)/(2sin(x/2)cos(x/2)}
y = tan-1{tan x/2}
y = x/2  => dy/dx = 1/2

A Charge is fired through a magnetic field. The magnetic force acting on it is maximum when the angle between the direction of motion and magnetic field is
  • a)
    π
  • b)
    zero
  • c)
    π/2
  • d)
    π/4
Correct answer is option 'C'. Can you explain this answer?

Krishna Iyer answered
The force will have a magnitude F=qvB sin q, thus it will be maximum if sin q is maximum. Thus, angle between velocity and magnetic field should be 90o or the charge particle moves perpendicular to the velocity vector.

  • a)
  • b)
  • c)
  • d)
Correct answer is option 'C'. Can you explain this answer?

Poonam Reddy answered
y + sin y = 5x
dy/dx + cos ydy/dx = 5
dy/dx = 5/(1+cos y)

When a charged particle moves in a magnetic field, its kinetic energy always
  • a)
    remain constant
  • b)
    first increases then decreases.
  • c)
    decreases
  • d)
    increases
Correct answer is option 'A'. Can you explain this answer?

Rajeev Saxena answered
The magnetic field does no work, so the kinetic energy and speed of a charged particle in a magnetic field remain constant. The magnetic force, acting perpendicular to the velocity of the particle, will cause circular motion.

  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Suhani Dangarh answered
Put x=tan thita. then you will get. 2 tan inverse x then differentiate

Differentiate   with respect to x. 
  • a)
    -1
  • b)
  • c)
    π/4 − x
  • d)
    1
Correct answer is option 'A'. Can you explain this answer?

Krishna Iyer answered
(cosx − sinx)/(cosx + sinx) = (1 − tanx)/(1 + tanx)
tan(A − B) = (tanA − tanB)/(1 + tanAtanB)
= tan(π/4−x)
putting this value in question.
tan−1 tan(π/4−x)
π/4 − x.
so d(π/4 − x)/dx = -1

Chapter doubts & questions for July Week 4 - Weekly Tests for JEE Preparation 2025 is part of JEE exam preparation. The chapters have been prepared according to the JEE exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for JEE 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of July Week 4 - Weekly Tests for JEE Preparation in English & Hindi are available as part of JEE exam. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.

Top Courses JEE

Related JEE Content