All questions of Ratio and Proportion for RRB Group D / RPF Constable Exam

In a mixture 60 litres, the ratio of milk and water 2 : 1. If this ratio is to be 1 : 2, then the quanity of water to be further added is:
  • a)
    20 litres
  • b)
    30 litres
  • c)
    40 litres
  • d)
    60 litres
Correct answer is option 'D'. Can you explain this answer?

Mihir Sen answered
Quantity of milk 
Quantity of water in it = (60 - 40) litres = 20 litres.
New ratio = 1 : 2
Let quantity of water to be added further be x litres
Then, milk : water 

∴ Quantity of water to be added = 60 litres.

The ratio of the income of A and B is 7 : 8, and the ratio of the income of B and C is 8 : 11, If the difference in the income earned by A and C is Rs. 800, then find the sum of income earned by all three of them.
  • a)
    Rs. 5200
  • b)
    Rs. 4800
  • c)
    Rs. 4000
  • d)
    Rs. 3600
Correct answer is option 'A'. Can you explain this answer?

Kiran Reddy answered
Given:
The ratio of the income of A and B = 7 : 8
The ratio of the income of B and C = 8 : 11
The difference in the income earned by A and C = Rs. 800
Calculation:
According to the question,
The ratio of the income of A and B = 7 : 8
The ratio of the income of B and C = 8 : 11
By combining the ratios, we get,
The ratio of the income of A, B and C = 7 : 8 : 11
Income of C = 11k
Income of A = 7k
The difference in the income earned by A and C = 11k - 7k = 4k
Again according to the question,
⇒ 4k = 800
⇒ k = 200
The income of A, B and C = 7k + 8k + 11k = 26k
Sum of income of A, B and C = 26 × 200 = Rs. 5200
Therefore, 'Rs. 5200' is the required answer.

Seats for Mathematics, Physics and Biology in a school are in the ratio 5 : 7 : 8. There is a proposal to increase these seats by 40%, 50% and 75% respectively. What will be the ratio after increased seats?
  • a)
    2 : 3 : 4
  • b)
    6 : 7 : 8
  • c)
    6 : 8 : 9
  • d)
    None of these
Correct answer is option 'A'. Can you explain this answer?

Let the incomes be 4x, 5x, 6x and the spending be 6y, 7y, 8y and savings are (4x–6y), (5x–7y) & (6x–8y)
Sheldon saves 1/4th of his income.
Therefore:
⇒ 4x – 6y = 4x / 4
⇒ 4x – 6y = x
⇒ 3x = 6y
⇒ x / y = 2
 y = x / 2
Ratio of Sheldon’s Leonard’s & Howard’s savings:
= 4x – 6y : 5x – 7y : 6x – 8y
= x : 5x – 7y : 6x – 8y
= x : 5x – 7x / 2 : 6x – 8x / 2
= x : 3x / 2 : 2x
= 2 : 3 : 4 

The sum of three numbers is 98. If the ratio of the first to second is 2 :3 and that of the second to the third is 5 : 8, then the second number is:
  • a)
    20
  • b)
    30
  • c)
    48
  • d)
    58
Correct answer is option 'B'. Can you explain this answer?

Aarav Sharma answered
**Given Information:**
- The sum of three numbers is 98.
- The ratio of the first number to the second number is 2:3.
- The ratio of the second number to the third number is 5:8.

**Let's solve the problem step by step:**

**Step 1:**
Let's assume the three numbers as follows:
- The first number = 2x
- The second number = 3x
- The third number = 8y

**Step 2:**
According to the given information, the sum of the three numbers is 98. Therefore, we can write the equation as:
2x + 3x + 8y = 98

**Step 3:**
Simplifying the equation, we get:
5x + 8y = 98

**Step 4:**
Now, we need to find the values of x and y in order to find the second number.

**Step 5:**
According to the given information, the ratio of the second number to the third number is 5:8. Therefore, we can write the equation as:
3x/8y = 5/8

**Step 6:**
Cross-multiplying the equation, we get:
24x = 40y

**Step 7:**
Simplifying the equation, we get:
3x = 5y

**Step 8:**
Now, we have two equations:
5x + 8y = 98
3x = 5y

**Step 9:**
Substituting the value of 3x from the second equation into the first equation, we get:
5(5y/3) + 8y = 98
25y/3 + 8y = 98
(25y + 24y)/3 = 98
49y/3 = 98
49y = 294
y = 294/49
y = 6

**Step 10:**
Substituting the value of y into the second equation, we get:
3x = 5(6)
3x = 30
x = 30/3
x = 10

**Step 11:**
Now, we can find the second number:
The second number = 3x = 3 * 10 = 30

Therefore, the correct answer is option **B) 30**.

11 : b : 44 are in continued proportion. Find b.
  • a)
    4
  • b)
    22
  • c)
    44
  • d)
    11
Correct answer is option 'B'. Can you explain this answer?

Alok Verma answered
We know that if a, b and c are in continued proportion then b2 = ac
b2 = 11.44
b2 = 484
b = 22

In a bag, there are coins of 25 p, 10 p and 5 p in the ratio of 1 : 2 : 3. If there is Rs. 30 in all, how many 5 p coins are there?
  • a)
    50
  • b)
    100
  • c)
    150
  • d)
    200
Correct answer is option 'C'. Can you explain this answer?

Let x is the number of 25 paisa coins then 2x and 3x will be for 10 and 5 paisa coins. 

Now 30 rupees equal to 30*100 paisa now total paisa equal to x*25+2x*10+3x*5=3000.

60x = 3000.
x = 50.

Now number 5 paisa coin is 3x equal to 3*50 = 150.

Can you explain the answer of this question below:

Two number are in the ratio 3 : 5. If 9 is subtracted from each, the new numbers are in the ratio 12 : 23. The smaller number is:

  • A:

    27

  • B:

    33

  • C:

    49

  • D:

    55

The answer is B.

Sagar Sharma answered
Given:
The ratio of two numbers is 3:5
After subtracting 9 from each number, the new ratio is 12:23

Let's assume the two numbers in the original ratio are 3x and 5x.

Ratio of the new numbers:
(3x-9) : (5x-9) = 12 : 23

Cross-multiplying, we get:
12(5x-9) = 23(3x-9)

Simplifying the equation:
60x - 108 = 69x - 207
-9x = -99
x = 11

Finding the smaller number:
Smaller number = 3x = 3 * 11 = 33

Therefore, the smaller number is 33, which corresponds to option 'B'.

Find the ratio A : B : C : D : E if,
A : B = 4 : 5
B : C = 6 : 7
C : D = 9 : 10
D : E = 5 : 2
  • a)
    200 : 270 : 315 : 350 : 140
  • b)
    120 : 270 : 315 : 350 : 140
  • c)
     216 : 270 : 315 : 350 : 140
  • d)
    216 : 270 : 315 : 350 : 210
Correct answer is option 'C'. Can you explain this answer?

Rhea Reddy answered
A : B = 4 : 5
B : C = 6 : 7
C : D = 9 : 10
D : E = 5 : 2
A : B : C : D : E = 4 x 6 x 9 x 5 : 5 x 6 x 9 x 5: 5 x 7 x 9 x 5:  5 x 7 x 10 x 5: 5 x 7 x 10 x 2
216 : 270 : 315 : 350 : 140
The required ratio A : B : C : D : E is 216 : 270 : 315 : 350 : 140

In a library, the ratio of number of story books to that of non-story books was 4:3 and total number of story books was 1248. When some more story books were bought, the ratio became 5:3. Find the number of story books bought.
  • a)
     312
  • b)
     321
  • c)
     936
  • d)
     1560
Correct answer is option 'A'. Can you explain this answer?

**Given information:**
- The ratio of the number of story books to that of non-story books was 4:3.
- The total number of story books was 1248.
- When some more story books were bought, the ratio became 5:3.

**Let's solve the problem step by step:**

**Step 1: Calculate the number of non-story books**
- Since the ratio of story books to non-story books is 4:3, let's assume the number of story books as 4x and the number of non-story books as 3x.
- According to the given information, the total number of story books is 1248. So, we can write the equation as 4x = 1248.
- Solving the equation, we get x = 1248/4 = 312.
- Therefore, the number of non-story books is 3x = 3 * 312 = 936.

**Step 2: Calculate the number of story books after the purchase**
- After some more story books were bought, the ratio became 5:3. Let's assume the number of additional story books as y.
- Now, the total number of story books is 1248 + y, and the total number of non-story books is still 936.
- According to the new ratio, the equation can be written as (1248 + y)/936 = 5/3.
- Cross-multiplying, we get 3 * (1248 + y) = 5 * 936.
- Simplifying the equation, we have 3744 + 3y = 4680.
- Subtracting 3744 from both sides, we get 3y = 936.
- Dividing both sides by 3, we get y = 936/3 = 312.

**Step 3: Calculate the number of story books bought**
- The number of story books bought is given by the value of y, which we calculated as 312.

Therefore, the number of story books bought is 312.

Hence, the correct answer is option A) 312.

A sum of Rs. 12,384 is divided between A, B, C and D such that the ratio of the shares of A and B is 3 : 4, that of B and C is 5 : 6, and that of C and D is 8 : 9. What is the share of C ? 
  • a)
    Rs. 2,880
  • b)
    Rs. 3,888
  • c)
    Rs. 3,456
  • d)
    Rs. 2,160
Correct answer is option 'C'. Can you explain this answer?

Given:
A : B = 3 : 4
B : C = 5 : 6
C : D = 8 : 9
Sum to divided among them = Rs. 12,384
Concept used:
Ratio Proportion
Calculation:
A : B = 3 : 4 = 15 : 20
B : C = 5 : 6 = 20 : 24
C : D = 8 : 9 = 24 : 27
A : B : C : D = 15 : 20 : 24 : 27
Share of C = 24/(15 + 20 + 24 + 27) × 12384 = Rs. 3456
∴ The share of C is Rs. 3456.

If 0.75 : x :: 5 : 8, then x is equal to:
  • a)
    1.12
  • b)
    1.2
  • c)
    1.25
  • d)
    1.30
Correct answer is option 'B'. Can you explain this answer?

Aarav Sharma answered
To find the value of "x" in the given proportion 0.75 : x :: 5 : 8, we can use the concept of cross-multiplication.

Step 1: Set up the proportion
0.75 : x :: 5 : 8

Step 2: Cross-multiply
0.75 * 8 = x * 5

Step 3: Solve for "x"
6 = 5x

Step 4: Divide both sides by 5
x = 6 / 5

Step 5: Simplify the fraction
x = 1.2

Therefore, the value of "x" in the proportion 0.75 : x :: 5 : 8 is equal to 1.2.

Summary:
To find the value of "x" in the given proportion, we set up the proportion and cross-multiply. Then we solve for "x" by dividing both sides of the equation. In this case, the value of "x" is equal to 1.2.

In a garrison of 3600 men, the provisions were sufficient for 20 days at the rate of 1.5 kg per man per day. If x more men joined, the provisions would be sufficient for 12 days at the rate of 2 kg per man per day. Find x.
  • a)
    600
  • b)
    800
  • c)
    900
  • d)
    720
Correct answer is option 'C'. Can you explain this answer?

Rhea Reddy answered
Let x be the number of new men joined the garrison,
The total quantity of food is = 3600(20) (1.5) kg ----------1
Now the available food will be consumed by (3600+x) men
(3600+x) (12) (2) kg  --------------2
1 = 2
Solving both the equations
3600(20) (1.5) = (3600+x) (12) (2)
108000 = 86400 + 24x
21600 = 24x
X = 900
900 more men joined the garrison.

A bag has ₹ 785 in the denomination of ₹ 2, ₹ 5 and ₹ 10 coins. The coins are in the ratio of 6 : 9 : 10. How many coins of ₹ 5 are in the bag?
  • a)
    60
  • b)
    12
  • c)
    45
  • d)
    24
Correct answer is option 'C'. Can you explain this answer?

Anjana Singh answered
Given:
₹ 785 in the denomination of ₹ 2, ₹ 5 and ₹ 10 coins
The coins are in the ratio of 6 : 9 : 10
Calculation:
Let the number of coins of ₹ 2, ₹ 5 and ₹ 10 be 6x, 9x, and 10x respectively
⇒ (2 × 6x) + (5 × 9x) + (10 × 10x) = 785
⇒ 157x = 785
∴ x = 5
Number of coins of ₹ 5 = 9x = 9 × 5 = 45
∴ 45 coins of ₹ 5 are in the bag

Chapter doubts & questions for Ratio and Proportion - Mathematics for RRB Group D / RPF Constable 2025 is part of RRB Group D / RPF Constable exam preparation. The chapters have been prepared according to the RRB Group D / RPF Constable exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for RRB Group D / RPF Constable 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Ratio and Proportion - Mathematics for RRB Group D / RPF Constable in English & Hindi are available as part of RRB Group D / RPF Constable exam. Download more important topics, notes, lectures and mock test series for RRB Group D / RPF Constable Exam by signing up for free.

Top Courses RRB Group D / RPF Constable