All Exams  >   JAMB  >   Mathematics for JAMB  >   All Questions

All questions of Integration & Its Applications for JAMB Exam

  • a)
    cos(sin-1x) + c
  • b)
    sin-1x + c
  • c)
    sin(cos-1x) + c
  • d)
    x + c
Correct answer is option 'D'. Can you explain this answer?

Divey Sethi answered
cos(sin-1x)/(1-x2)½……………….(1)
t = sin-1 x
dt = dx/(1-x2)½
Put the value of dt in eq(1)
= ∫cost dt
= sint + c
= sin(sin-1 x) + c
⇒ x + c

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Leelu Bhai answered
I = ∫√(x² + 5x)dx= ∫√(x² + 5x + 25/4 - 25/4)= ∫√{(x + 5/2)² - (5/2)²}={1/2(x+5/2)(√x² + 5x)} - {25/8 log{(x + 5/2)+√x²+ 5x}}= {(2x + 5)/4 (√x² + 5x)} - {25/8 log{(x + 5/2)+√x²+ 5x}}Thus, option D is correct...

Evaluate:  
  • a)
  • b)
    1/√3 arc tan[(x-2)/√5] + C
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Deepak Kapoor answered
  
Let's apply the integral substitution,
substitute 
Now use the standard integral :
substitute back u=(x-2) and add a constant C to the solution,
 

  • a)
    , where C is a constant
  • b)
    , where C is a constant
  • c)
    , where C is a constant
  • d)
    , where C is a constant
Correct answer is option 'C'. Can you explain this answer?

Neha Sharma answered
 q = √x, dq = dx/2√x
⇒ dx = 2q dq
so the integral is 2∫qcosqdq
integration by parts using form 
∫uv' = uv − ∫u'v
here u = q, u'= 1 and v'= cosq, v=sinq
so we have 2(qsinq −∫sinqdq)
= 2(qsinq + cosq + C)
= 2(√xsin√x + cos√x + C)

Evaluate: 
  • a)
    1/2
  • b)
    1/4
  • c)
    1
  • d)
    1/8
Correct answer is option 'B'. Can you explain this answer?

Sumair Sadiq answered
This is maths questions I can explain it but you know it is not possible here because this app is not allow to take photo but try it ok let tan inverce 4x =t diff both side wrt x 4x³/1+x⁴ Ka square
x cube / 1+ x8 =dt/4 I = £ 0 se pie by 2 (because when x= 0 t = pie by 2and x = infinity then t = 0 )
I = 1/4 £ 0 se pie by 2 sin t l = 1/4 (- cos t limit 0 se pie by 2 )l = 1/4 ( - cos pie by 2 + cos 0) l = 1/4 ( 0+ 1) l= 1/4 × 1l= 1/4
use my WhatsApp number for further questions but only for study 7060398771

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'A'. Can you explain this answer?

Preeti Iyer answered
 (x)½ (a - x)½ dx
=  ∫(ax - x2)½ dx
=  ∫{-(x2 - ax)½} dx
=  ∫{-(x2 - ax + a2/4 - a2/4)½} dx
=  ∫{-(x - a/2)2 - a2/4} dx
=  ∫{(a/2)2 - (x - a/2)2} dx
=  ½(x - a/2) {(a/2)2 - (x - a/2)2} + (a2/4) (½ sin-1(x - a)/a2)
= {(2x - a)/4 (ax - x2)½} + {a2/8 sin-1(2x - a)/a} + c

The integration of the function ex.cos3x is:
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Om Desai answered
Let I = ∫ex . cos 3x dx
⇒ I = cos 3x × ∫ex dx − ∫[d/dx(cos 3x) × ∫ex dx]dx
⇒ I = ex cos 3x − ∫(− 3 sin 3x . ex)dx
⇒ I = ex cos 3x + 3∫sin 3x . ex dx
⇒ I = ex cos 3x + 3[sin 3x × ∫ex dx − ∫{ddx(sin 3x) × ∫ex dx}dx]
⇒ I = ex cos 3x + 3[sin 3x . ex − ∫3 cos 3x . ex dx]
⇒ I = ex cos 3x + 3 ex . sin 3x − 9∫ex . cos 3x dx
⇒ I =  ex cos 3x + 3 ex . sin 3x − 9I
⇒ 10I =  ex cos 3x + 3 ex . sin 3x
⇒ I = 1/10[ex cos 3x + 3 ex . sin 3x] + C

  • a)
    -1
  • b)
    zero
  • c)
    1
  • d)
    2
Correct answer is option 'B'. Can you explain this answer?

Praveen Kumar answered
∫(0 to 4)(x)1/2 - x2 dx
= [[(x)3/2]/(3/2) - x2](0 to 4)
= [[2x3/2]/3 - x2](0 to 4)
= [[2(0)3/2]/3 - (0)2]] -  [[2(4)3/2]/3 - (4)2]]
= 0-0
= 0

The value of the integral is:
  • a)
    2e – 1
  • b)
    2e + 1
  • c)
    2e
  • d)
    2(e – 1)
Correct answer is option 'D'. Can you explain this answer?

Correct Answer : d
Explanation :  ∫(-1 to 1) e|x| dx
∫(-1 to 0) e|x|dx + ∫(0 to 1) e|x|dx
 e1 -1 + e1 - 1
=> 2(e - 1)

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Vikas Kapoor answered
I=∫sin(logx)×1dx
= sin(logx) × x−∫cos(logx) × (1/x)×xdx
= xsin(logx)−∫cos(logx) × 1dx
= xsin(logx)−[cos(logx) × x−∫sin(logx) × (1/x) × xdx]
∴ I=xsin(logx)−cos(logx) × x−∫sin(logx)dx
2I=x[sin(logx)−cos(logx)]
∴ I=(x/2)[sin(logx)−cos(logx)]

If   is
  • a)
    2/3
  • b)
    4/5
  • c)
    1
  • d)
    None of these
Correct answer is option 'B'. Can you explain this answer?

Om Desai answered
In the question, it should be f’(2) instead of f”(2) 
Explanation:- f(x) = ∫(0 to x) log(1+x2)
f’(x) = 2xdx/(1+x2)
f’(2) = 2(2)/(1+(2)2)
= 4/5

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Om Desai answered
sin2x = 1 - cos2x
∫sinx(sin2x - 3cos2x + 15)dx
Put cos2x = t
 ∫sinx(1 - cos2x - 3cos2x + 15)dx
=  ∫sinx (16 - 4cos2x)dx
Put t = cosx, differentiate with respect to x, we get 
dt/dx = -sinx
= -  ∫ [(16 - 4t2)]1/2dt
= -2 ∫ [(2)2 - (t)2]½
= -2{[(2)2 - (t)2]½ + 2sin-1(t/2)} + c
= - cosx {[4 - (cos)2x]½ - 4sin-1(cosx/2)} + c

If   then the value of k is:
  • a)
    7/8
  • b)
    5/8
  • c)
    1/2
  • d)
    3/2
Correct answer is option 'C'. Can you explain this answer?

Sushil Kumar answered
Let I=∫(0 to k) 1/[1 + 4x2]dx = π8
Now, ∫(0 to k) 1/[4(1/4 + x2)]dx
= 2/4[tan−1 2x]0 to k
= 1/2tan-1 2k − 0 = π/8
1/2tan−1 2k = π8
⇒ tan−1 2k = π/4
⇒ 2k = 1
∴ k = 1/2

Evaluate:
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Hansa Sharma answered
Let  x=tanθ , so that  θ=tan−1x ,  dx=sec2θdθ 
Then the given integral is equivalent to
∫tan−1(2x/(1−x2)dx
=∫tan−1 (2tanθ/(1−tan2θ))⋅sec2θdθ 
=∫tan−1tan2θ⋅sec2θdθ 
=2×∫θsec2θdθ 
(integrate by parts)
=2θ⋅∫sec2θdθ −2⋅∫1⋅(∫sec2θdθ)dθ 
=2θtanθ−2⋅∫tanθdθ 
=2θtanθ−2loge secθ+c 
=2xtan−1x−2loge√1+x2+c 
=2xtan−1x−loge(1+x2)+c 

  • a)
    g (x) h (s) = constant
  • b)
    g (x) = h (x).
  • c)
    g (x) - h (x) = constant
  • d)
    h (x) + g (x) = constant
Correct answer is option 'C'. Can you explain this answer?

Integration of a function can have many possibility by adding variable C.
for instance :
take integral of X^2=X^3/3 +C
integral of X^2 can be X^3/3 +1, X^3/3 +2.....
their d/CE is a constant.

The area bounded by the parabola y2 = 4x and the line x + y = 3 is
  • a)
    32/3
  • b)
    16/3
  • c)
    64/3
  • d)
    none of these
Correct answer is option 'C'. Can you explain this answer?

To find the area bounded by the parabola y^2 = 4x and the line x + y = 3, we need to find the points of intersection between the parabola and the line and then calculate the area between them.

Finding the Points of Intersection:
To find the points of intersection, we can set the equations of the parabola and the line equal to each other and solve for x and y:

y^2 = 4x
x + y = 3

Substituting y = 3 - x into the equation of the parabola, we get:

(3 - x)^2 = 4x

Expanding and rearranging the equation, we get:

9 - 6x + x^2 = 4x
x^2 + 10x - 9 = 0

Now, we can solve this quadratic equation for x using factoring or the quadratic formula. By factoring, we can write it as:

(x + 9)(x - 1) = 0

This gives us two possible values for x: x = -9 and x = 1.

Substituting these values back into the equation of the line, we can find the corresponding y-values:

For x = -9:
y = 3 - (-9) = 3 + 9 = 12

For x = 1:
y = 3 - 1 = 2

So, the points of intersection are (-9, 12) and (1, 2).

Calculating the Area:
To calculate the area bounded by the parabola and the line, we can integrate the difference between the y-values of the parabola and the line over the interval between the x-values of intersection points.

We need to find the integral of (y - (3 - x)) with respect to x, where y is given by the equation of the parabola: y = √(4x).

The integral becomes:

∫[(√(4x) - (3 - x))] dx

Integrating and evaluating this integral from x = -9 to x = 1 gives us the required area:

A = ∫[(√(4x) - (3 - x))] dx (from x = -9 to x = 1)

Simplifying the integral and evaluating it, we get:

A = [(2/3)x^(3/2) + (x^2)/2 - 3x] (from x = -9 to x = 1)
= [2/3 + 1/2 - 3 - ((2/3)(-9)^(3/2) + ((-9)^2)/2 - 3(-9))]

Calculating this expression, we get:

A = [2/3 + 1/2 - 3 - (2/3 - 243/2 + 27)]
= [2/3 + 1/2 - 3 - 2/3 + 243/2 - 27]
= [16/3]

Therefore, the area bounded by the parabola y^2 = 4x and the line x + y = 3 is 16/3.

Chapter doubts & questions for Integration & Its Applications - Mathematics for JAMB 2025 is part of JAMB exam preparation. The chapters have been prepared according to the JAMB exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for JAMB 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Integration & Its Applications - Mathematics for JAMB in English & Hindi are available as part of JAMB exam. Download more important topics, notes, lectures and mock test series for JAMB Exam by signing up for free.

Mathematics for JAMB

134 videos|94 docs|102 tests

Top Courses JAMB