Page 1
Edurev123
3. Gradient, Divergence and Cur in
Cartesian and Cylindrical Coordinate and
Directional Derivative
3.1 Find the directional derivative of :
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
(???????? :?? +?? =???? Marks)
Solution:
Approach : The directional derivative in any direction is the dot product of the gradient
with that direction.
(i)
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
=(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
Directional derivative along ?? -axis
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
??
Directional derivative along ?? -axis at (2,-1,2)
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48
(ii)
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
=??ˆ+6??ˆ
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
)
=(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
=(
-1-12
3
)=-13
Page 2
Edurev123
3. Gradient, Divergence and Cur in
Cartesian and Cylindrical Coordinate and
Directional Derivative
3.1 Find the directional derivative of :
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
(???????? :?? +?? =???? Marks)
Solution:
Approach : The directional derivative in any direction is the dot product of the gradient
with that direction.
(i)
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
=(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
Directional derivative along ?? -axis
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
??
Directional derivative along ?? -axis at (2,-1,2)
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48
(ii)
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
=??ˆ+6??ˆ
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
)
=(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
=(
-1-12
3
)=-13
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ??
are the scalar functions defined by:
and
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
(2011: 15 Marks)
Solution:
??? =(
?
??? ?? +
?
??? ?? +
?
??? ???
)(?? +?? +?? )
=?? +?? +???
??? =2?? ?? +2?? ?? +2?? ???
Similarly , ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )???
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero.
??? ×??? =|
?? ?? ???
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
???
(2?? 2
+2???? -2?? 2
-2???? ).
? ??? (??? ×??? )= (?? +?? +???
)·[(2???? +2?? 2
-2???? -2?? 2
)??
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )???
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
? The vector ??? ,??? ,? ware co-planar.
3.3 If ??? be the position vector of a point, find the value(s) of ?? for which the vector
?? ?? ??? is (i) irrotational, (ii) solenoidal.
(2011: 15 Marks)
Solution:
A vector ???
is said to be solenoidal if divergence of ???
=0.
i.e.,
?·???
=0
Also, div (?? ???
)=(grad ?? )·???
+?? div ???
Page 3
Edurev123
3. Gradient, Divergence and Cur in
Cartesian and Cylindrical Coordinate and
Directional Derivative
3.1 Find the directional derivative of :
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
(???????? :?? +?? =???? Marks)
Solution:
Approach : The directional derivative in any direction is the dot product of the gradient
with that direction.
(i)
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
=(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
Directional derivative along ?? -axis
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
??
Directional derivative along ?? -axis at (2,-1,2)
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48
(ii)
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
=??ˆ+6??ˆ
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
)
=(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
=(
-1-12
3
)=-13
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ??
are the scalar functions defined by:
and
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
(2011: 15 Marks)
Solution:
??? =(
?
??? ?? +
?
??? ?? +
?
??? ???
)(?? +?? +?? )
=?? +?? +???
??? =2?? ?? +2?? ?? +2?? ???
Similarly , ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )???
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero.
??? ×??? =|
?? ?? ???
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
???
(2?? 2
+2???? -2?? 2
-2???? ).
? ??? (??? ×??? )= (?? +?? +???
)·[(2???? +2?? 2
-2???? -2?? 2
)??
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )???
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
? The vector ??? ,??? ,? ware co-planar.
3.3 If ??? be the position vector of a point, find the value(s) of ?? for which the vector
?? ?? ??? is (i) irrotational, (ii) solenoidal.
(2011: 15 Marks)
Solution:
A vector ???
is said to be solenoidal if divergence of ???
=0.
i.e.,
?·???
=0
Also, div (?? ???
)=(grad ?? )·???
+?? div ???
??? ?? ?? will be solenoidal if
div (?? ?? ?? ) =0
? (grad ?? ?? )·?? +?? ?? div (?? ) =0
? (?? ?? ?? -1
grad ?? )·?? +?? ?? ·3 =0
? div ?? =(??ˆ
?
??? +??ˆ
?
??? +??ˆ
?
??? )(?? ??ˆ+?? ??ˆ+?? ??ˆ
)
=1+1+1=3
and grad ?? (4)=?? '
(4) grad ?? ? (?? ?? ?? -1
·
??
?? )·?? +3?? ?? =0
? ?? ?? ?? -2
(?? ·?? )+3?? ?? =0
? ?? ?? ?? -2
·?? 2
+3?? ?? =0
? ?? ?? (?? +3)=0??? =-3
A vector ?? is said to be irrotational if
?×???
=0
Also, ?×(?? ???
) =(grad ?? )×???
+?? (?×???
)
??? ?? ?? will be irrotational if
?×(?? ?? ?? ) =0
? (grad ?? ?? )×?? +?? ?? (?×?? ) =0
? (?? ?? ?? -1
·
??
?? )·?? +?? ?? ·0=0
Hence, ?? ?? ?? is irrotatlonal for all the real values of ?? .
3.4 A vector field is given by
????
=(?? ?? +?? ?? ?? )?? +(?? ?? +?? ?? ?? )??
Verify that the field ????
is irrotational or not. Find the scalar potential.
(2015 : 12 Marks)
Solution:
A vector field ??
is said to be irrotational if curl ??
=0, i.e.,
?×??
=0
?
??
×??
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? ?? 2
?? 2
+?? 2
?? 0
|
|
Page 4
Edurev123
3. Gradient, Divergence and Cur in
Cartesian and Cylindrical Coordinate and
Directional Derivative
3.1 Find the directional derivative of :
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
(???????? :?? +?? =???? Marks)
Solution:
Approach : The directional derivative in any direction is the dot product of the gradient
with that direction.
(i)
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
=(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
Directional derivative along ?? -axis
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
??
Directional derivative along ?? -axis at (2,-1,2)
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48
(ii)
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
=??ˆ+6??ˆ
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
)
=(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
=(
-1-12
3
)=-13
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ??
are the scalar functions defined by:
and
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
(2011: 15 Marks)
Solution:
??? =(
?
??? ?? +
?
??? ?? +
?
??? ???
)(?? +?? +?? )
=?? +?? +???
??? =2?? ?? +2?? ?? +2?? ???
Similarly , ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )???
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero.
??? ×??? =|
?? ?? ???
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
???
(2?? 2
+2???? -2?? 2
-2???? ).
? ??? (??? ×??? )= (?? +?? +???
)·[(2???? +2?? 2
-2???? -2?? 2
)??
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )???
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
? The vector ??? ,??? ,? ware co-planar.
3.3 If ??? be the position vector of a point, find the value(s) of ?? for which the vector
?? ?? ??? is (i) irrotational, (ii) solenoidal.
(2011: 15 Marks)
Solution:
A vector ???
is said to be solenoidal if divergence of ???
=0.
i.e.,
?·???
=0
Also, div (?? ???
)=(grad ?? )·???
+?? div ???
??? ?? ?? will be solenoidal if
div (?? ?? ?? ) =0
? (grad ?? ?? )·?? +?? ?? div (?? ) =0
? (?? ?? ?? -1
grad ?? )·?? +?? ?? ·3 =0
? div ?? =(??ˆ
?
??? +??ˆ
?
??? +??ˆ
?
??? )(?? ??ˆ+?? ??ˆ+?? ??ˆ
)
=1+1+1=3
and grad ?? (4)=?? '
(4) grad ?? ? (?? ?? ?? -1
·
??
?? )·?? +3?? ?? =0
? ?? ?? ?? -2
(?? ·?? )+3?? ?? =0
? ?? ?? ?? -2
·?? 2
+3?? ?? =0
? ?? ?? (?? +3)=0??? =-3
A vector ?? is said to be irrotational if
?×???
=0
Also, ?×(?? ???
) =(grad ?? )×???
+?? (?×???
)
??? ?? ?? will be irrotational if
?×(?? ?? ?? ) =0
? (grad ?? ?? )×?? +?? ?? (?×?? ) =0
? (?? ?? ?? -1
·
??
?? )·?? +?? ?? ·0=0
Hence, ?? ?? ?? is irrotatlonal for all the real values of ?? .
3.4 A vector field is given by
????
=(?? ?? +?? ?? ?? )?? +(?? ?? +?? ?? ?? )??
Verify that the field ????
is irrotational or not. Find the scalar potential.
(2015 : 12 Marks)
Solution:
A vector field ??
is said to be irrotational if curl ??
=0, i.e.,
?×??
=0
?
??
×??
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? ?? 2
?? 2
+?? 2
?? 0
|
|
=??ˆ(0-0)-??ˆ(0-0)+??ˆ
(2???? -2???? )
=0
?
???
is irrotational.
Now, it can be written as grad of a scalar field, i.e., to find ?? so that
??? =??
i.e., ??ˆ
??? ??? +??ˆ
??? ??? =(?? 2
+?? ?? 2
)??ˆ+(?? 2
+?? 2
?? )??ˆ
?
??? ??? =?? 2
+?? ?? 2
;
??? ??? =?? 2
+?? 2
??
? ?? =
?? 3
3
+
?? 2
?? 2
2
+?? (?? ) (*)
Differentiating w.r.t. ?? and comparing with (*)
??? ??? =?? 2
?? +?? '
(?? )
? ?? '
(?? )=?? 2
?? (?? )=
?? 3
3
+?? ? ?? (?? ,?? )=
?? 3
3
+
?? 3
3
+
?? 2
?? 2
2
+??
3.5 For what values of the constants ?? ,?? and ?? the vector
????
=(?? +?? +???? )??ˆ+(???? +?? ?? -?? )??ˆ+(-?? +???? +?? ?? )??ˆ
is irrational. Find the divergence in cylindrical coordinates of this vector with
these values.
(2017: 10 Marks)
Solution:
Irrational ? Curl ???
=0
Page 5
Edurev123
3. Gradient, Divergence and Cur in
Cartesian and Cylindrical Coordinate and
Directional Derivative
3.1 Find the directional derivative of :
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
(???????? :?? +?? =???? Marks)
Solution:
Approach : The directional derivative in any direction is the dot product of the gradient
with that direction.
(i)
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
=(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
Directional derivative along ?? -axis
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
??
Directional derivative along ?? -axis at (2,-1,2)
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48
(ii)
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
=??ˆ+6??ˆ
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
)
=(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
=(
-1-12
3
)=-13
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ??
are the scalar functions defined by:
and
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
(2011: 15 Marks)
Solution:
??? =(
?
??? ?? +
?
??? ?? +
?
??? ???
)(?? +?? +?? )
=?? +?? +???
??? =2?? ?? +2?? ?? +2?? ???
Similarly , ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )???
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero.
??? ×??? =|
?? ?? ???
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
???
(2?? 2
+2???? -2?? 2
-2???? ).
? ??? (??? ×??? )= (?? +?? +???
)·[(2???? +2?? 2
-2???? -2?? 2
)??
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )???
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
? The vector ??? ,??? ,? ware co-planar.
3.3 If ??? be the position vector of a point, find the value(s) of ?? for which the vector
?? ?? ??? is (i) irrotational, (ii) solenoidal.
(2011: 15 Marks)
Solution:
A vector ???
is said to be solenoidal if divergence of ???
=0.
i.e.,
?·???
=0
Also, div (?? ???
)=(grad ?? )·???
+?? div ???
??? ?? ?? will be solenoidal if
div (?? ?? ?? ) =0
? (grad ?? ?? )·?? +?? ?? div (?? ) =0
? (?? ?? ?? -1
grad ?? )·?? +?? ?? ·3 =0
? div ?? =(??ˆ
?
??? +??ˆ
?
??? +??ˆ
?
??? )(?? ??ˆ+?? ??ˆ+?? ??ˆ
)
=1+1+1=3
and grad ?? (4)=?? '
(4) grad ?? ? (?? ?? ?? -1
·
??
?? )·?? +3?? ?? =0
? ?? ?? ?? -2
(?? ·?? )+3?? ?? =0
? ?? ?? ?? -2
·?? 2
+3?? ?? =0
? ?? ?? (?? +3)=0??? =-3
A vector ?? is said to be irrotational if
?×???
=0
Also, ?×(?? ???
) =(grad ?? )×???
+?? (?×???
)
??? ?? ?? will be irrotational if
?×(?? ?? ?? ) =0
? (grad ?? ?? )×?? +?? ?? (?×?? ) =0
? (?? ?? ?? -1
·
??
?? )·?? +?? ?? ·0=0
Hence, ?? ?? ?? is irrotatlonal for all the real values of ?? .
3.4 A vector field is given by
????
=(?? ?? +?? ?? ?? )?? +(?? ?? +?? ?? ?? )??
Verify that the field ????
is irrotational or not. Find the scalar potential.
(2015 : 12 Marks)
Solution:
A vector field ??
is said to be irrotational if curl ??
=0, i.e.,
?×??
=0
?
??
×??
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? ?? 2
?? 2
+?? 2
?? 0
|
|
=??ˆ(0-0)-??ˆ(0-0)+??ˆ
(2???? -2???? )
=0
?
???
is irrotational.
Now, it can be written as grad of a scalar field, i.e., to find ?? so that
??? =??
i.e., ??ˆ
??? ??? +??ˆ
??? ??? =(?? 2
+?? ?? 2
)??ˆ+(?? 2
+?? 2
?? )??ˆ
?
??? ??? =?? 2
+?? ?? 2
;
??? ??? =?? 2
+?? 2
??
? ?? =
?? 3
3
+
?? 2
?? 2
2
+?? (?? ) (*)
Differentiating w.r.t. ?? and comparing with (*)
??? ??? =?? 2
?? +?? '
(?? )
? ?? '
(?? )=?? 2
?? (?? )=
?? 3
3
+?? ? ?? (?? ,?? )=
?? 3
3
+
?? 3
3
+
?? 2
?? 2
2
+??
3.5 For what values of the constants ?? ,?? and ?? the vector
????
=(?? +?? +???? )??ˆ+(???? +?? ?? -?? )??ˆ+(-?? +???? +?? ?? )??ˆ
is irrational. Find the divergence in cylindrical coordinates of this vector with
these values.
(2017: 10 Marks)
Solution:
Irrational ? Curl ???
=0
Curl ?
??
=?×???
[
?? ?? ?? ?
??? ?
??? ?
??? ?? ?? h]
( if ?? =???? +???? +h?? )
=|
|
?? ?? ?? ?
??? ?
??? ?
??? ?? +?? +???? ???? +2?? -?? -?? +???? +2?? |
|
=??(?? -(-1)-?? (-1-?? )+?? (?? -1)
=(?? +1)?? +(?? +1)?? +(?? -1)?? =0
? ?? =-1,?? =1,?? =-1
? ???
=(?? +?? -?? )?? +(?? +2?? -?? )?? +(-?? -?? +2?? )??
We find div ???
and express it in cylindrical coordinates.
???
=(?? +?? -?? )?? +(?? +2?? -?? )?? +(-?? -?? +2?? )?? div ???
=?·???
=
??? ?? ??? +
??? ?? ??? +
??? ?? ??? =1+2+2=5 (constant)
Hence, divergence in cylindrical co-ordinates =5.
3.6 Let ???? =?? ?? ??ˆ+?? ?? ??ˆ+?? ?? ??ˆ
. Show that curl (curl ???? )=?? ?????? (?????? ???? )-?? ?? ???? .
(2018: 12 Marks)
Solution:
Curl ( Curl ?? )=?×(?×?? ) .
Now, we know that
??
×(???
×??
)=(??
·??
)???
-(??
·???
)??
Given:
?? 1
??ˆ+?? 2
??ˆ+?? 3
??ˆ
=??
?×?? =|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 1
?? 2
?? 3
|
|
=??ˆ(
??? 3
??? -
??? 2
??? )-??ˆ(
??? 3
??? -
??? 1
??? )+??ˆ
(
??? 2
??? -
??? 1
??? )
Read More