Page 1
Edurev123
7. Vortex Motion
7.1 In an incompressible fluid, the vorticity at every point is constant in magnitude
and direction; show that the components of velocity ?? ,?? ,?? are solutions of
Laplace equation.
(2010: 12 Marks)
Solution:
Let velocity,
?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
? Vorticity,
???? =?×??
=|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? ?? |
=??ˆ(
??? ??? -
??? ??? )-??ˆ(
??? ??? -
??? ??? )+?? (
??? ??? -
??? ??? )= Constant (given)
??
??? ??? -
??? ??? =0 or
??? ??? =
??? ???
??
?
2
?? ??? 2
=
?
2
?? ??? ???
and
?
2
?? ??? ??? =
?
2
?? ??? 2
(2)
Similarly,
and
??? ??? ?=
??? ??? ?
?
2
?? ??? 2
=
?
2
!
??? ??? (3)
?
2
?? ??? ??? ?=
?
2
?? ??? 2
(4)
Also,
Page 2
Edurev123
7. Vortex Motion
7.1 In an incompressible fluid, the vorticity at every point is constant in magnitude
and direction; show that the components of velocity ?? ,?? ,?? are solutions of
Laplace equation.
(2010: 12 Marks)
Solution:
Let velocity,
?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
? Vorticity,
???? =?×??
=|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? ?? |
=??ˆ(
??? ??? -
??? ??? )-??ˆ(
??? ??? -
??? ??? )+?? (
??? ??? -
??? ??? )= Constant (given)
??
??? ??? -
??? ??? =0 or
??? ??? =
??? ???
??
?
2
?? ??? 2
=
?
2
?? ??? ???
and
?
2
?? ??? ??? =
?
2
?? ??? 2
(2)
Similarly,
and
??? ??? ?=
??? ??? ?
?
2
?? ??? 2
=
?
2
!
??? ??? (3)
?
2
?? ??? ??? ?=
?
2
?? ??? 2
(4)
Also,
??? ??? -
??? ??? =0?
??? ??? =
??? ???
??
?
2
?? ??? ??? =
?
2
?? ??? 2
and
?
2
?? ??? 2
=
??? ??? ??? (6)
As fluid is incompressible, ? by eqn. of continuity
??? ??? +
??? ??? +
??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? ??? +
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, satisfies Laplace's equation.
In the same way,
?
2
?? ??? ??? +
?
2
?? ??? 2
+
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
and
?
2
?? ??? ??? +
?
2
?? ??? ??? +
?
2
?? ??? 2
=0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, ?? and ?? also satisfy Laplace's equation.
??? ,?? ,?? are solutions of Laplace's equation.
7.2 When a pair of equal and opposite rectilinear vertices are situated in a long
circular cylinder at equal distances from its axis, show that the path of each
vortex is given by the equation
(?? ?? ?????? ??? ?? -?? ?? )=?? ?? ?? ?? ?? ?? ?? ?????? ?? ???
?? being measured from the line through the centre perpendicular to the joint of the
vertices.
(2010 : 30 Marks)
Page 3
Edurev123
7. Vortex Motion
7.1 In an incompressible fluid, the vorticity at every point is constant in magnitude
and direction; show that the components of velocity ?? ,?? ,?? are solutions of
Laplace equation.
(2010: 12 Marks)
Solution:
Let velocity,
?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
? Vorticity,
???? =?×??
=|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? ?? |
=??ˆ(
??? ??? -
??? ??? )-??ˆ(
??? ??? -
??? ??? )+?? (
??? ??? -
??? ??? )= Constant (given)
??
??? ??? -
??? ??? =0 or
??? ??? =
??? ???
??
?
2
?? ??? 2
=
?
2
?? ??? ???
and
?
2
?? ??? ??? =
?
2
?? ??? 2
(2)
Similarly,
and
??? ??? ?=
??? ??? ?
?
2
?? ??? 2
=
?
2
!
??? ??? (3)
?
2
?? ??? ??? ?=
?
2
?? ??? 2
(4)
Also,
??? ??? -
??? ??? =0?
??? ??? =
??? ???
??
?
2
?? ??? ??? =
?
2
?? ??? 2
and
?
2
?? ??? 2
=
??? ??? ??? (6)
As fluid is incompressible, ? by eqn. of continuity
??? ??? +
??? ??? +
??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? ??? +
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, satisfies Laplace's equation.
In the same way,
?
2
?? ??? ??? +
?
2
?? ??? 2
+
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
and
?
2
?? ??? ??? +
?
2
?? ??? ??? +
?
2
?? ??? 2
=0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, ?? and ?? also satisfy Laplace's equation.
??? ,?? ,?? are solutions of Laplace's equation.
7.2 When a pair of equal and opposite rectilinear vertices are situated in a long
circular cylinder at equal distances from its axis, show that the path of each
vortex is given by the equation
(?? ?? ?????? ??? ?? -?? ?? )=?? ?? ?? ?? ?? ?? ?? ?????? ?? ???
?? being measured from the line through the centre perpendicular to the joint of the
vertices.
(2010 : 30 Marks)
Solution:
Let a pair of equal and opposite vertices of strength +?? and -?? are placed at the point
?? (?? ,?? ) and ?? (?? ,?? ) respectively.
The image consists of
(i) A vertex of strength -?? at an inverse point ?? (
?? 2
?? ,?? ) .
(ii) A vertex of strength +?? at an inverse point ?? (
?? 2
?? ,-?? ) .
The complex potential at any point ?? becomes
?? =
????
2?? log?(?? -?? ?? ????
)-
????
2?? log?{?? -(
?? 2
?? )?? ????
}-
????
2?? log?(?? -?? ?? -????
)+
????
2?? log?{?? -(
?? 2
?? )?? -????
}
The motion of ?? is due to other vertices, thus for the motion ?? , the complex potential at
any point ?? (?? =?? ?? ????
) becomes
or
?? 1
=[-
????
2?? log?{?? -(
?? 2
?? )?? ????
}-
????
2?? log?(?? -?? ?? -????
)-
????
2?? log?{?? -(
?? 2
?? )?? -????
}]
?? -?? ?? ????
?? 1
=-
????
2?? [log?{?? ?? ????
-(
?? 2
?? )?? ????
}log?(?? ?? ????
-?? ?? -????
)-log?{?? ?? ????
-(
?? 2
?? )?? -????
}]
or
Page 4
Edurev123
7. Vortex Motion
7.1 In an incompressible fluid, the vorticity at every point is constant in magnitude
and direction; show that the components of velocity ?? ,?? ,?? are solutions of
Laplace equation.
(2010: 12 Marks)
Solution:
Let velocity,
?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
? Vorticity,
???? =?×??
=|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? ?? |
=??ˆ(
??? ??? -
??? ??? )-??ˆ(
??? ??? -
??? ??? )+?? (
??? ??? -
??? ??? )= Constant (given)
??
??? ??? -
??? ??? =0 or
??? ??? =
??? ???
??
?
2
?? ??? 2
=
?
2
?? ??? ???
and
?
2
?? ??? ??? =
?
2
?? ??? 2
(2)
Similarly,
and
??? ??? ?=
??? ??? ?
?
2
?? ??? 2
=
?
2
!
??? ??? (3)
?
2
?? ??? ??? ?=
?
2
?? ??? 2
(4)
Also,
??? ??? -
??? ??? =0?
??? ??? =
??? ???
??
?
2
?? ??? ??? =
?
2
?? ??? 2
and
?
2
?? ??? 2
=
??? ??? ??? (6)
As fluid is incompressible, ? by eqn. of continuity
??? ??? +
??? ??? +
??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? ??? +
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, satisfies Laplace's equation.
In the same way,
?
2
?? ??? ??? +
?
2
?? ??? 2
+
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
and
?
2
?? ??? ??? +
?
2
?? ??? ??? +
?
2
?? ??? 2
=0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, ?? and ?? also satisfy Laplace's equation.
??? ,?? ,?? are solutions of Laplace's equation.
7.2 When a pair of equal and opposite rectilinear vertices are situated in a long
circular cylinder at equal distances from its axis, show that the path of each
vortex is given by the equation
(?? ?? ?????? ??? ?? -?? ?? )=?? ?? ?? ?? ?? ?? ?? ?????? ?? ???
?? being measured from the line through the centre perpendicular to the joint of the
vertices.
(2010 : 30 Marks)
Solution:
Let a pair of equal and opposite vertices of strength +?? and -?? are placed at the point
?? (?? ,?? ) and ?? (?? ,?? ) respectively.
The image consists of
(i) A vertex of strength -?? at an inverse point ?? (
?? 2
?? ,?? ) .
(ii) A vertex of strength +?? at an inverse point ?? (
?? 2
?? ,-?? ) .
The complex potential at any point ?? becomes
?? =
????
2?? log?(?? -?? ?? ????
)-
????
2?? log?{?? -(
?? 2
?? )?? ????
}-
????
2?? log?(?? -?? ?? -????
)+
????
2?? log?{?? -(
?? 2
?? )?? -????
}
The motion of ?? is due to other vertices, thus for the motion ?? , the complex potential at
any point ?? (?? =?? ?? ????
) becomes
or
?? 1
=[-
????
2?? log?{?? -(
?? 2
?? )?? ????
}-
????
2?? log?(?? -?? ?? -????
)-
????
2?? log?{?? -(
?? 2
?? )?? -????
}]
?? -?? ?? ????
?? 1
=-
????
2?? [log?{?? ?? ????
-(
?? 2
?? )?? ????
}log?(?? ?? ????
-?? ?? -????
)-log?{?? ?? ????
-(
?? 2
?? )?? -????
}]
or
or ??? 1
=
-????
2?? [log?{(?? cos??? -(
?? 2
?? )cos??? )+?? (?? sin??? -
?? 2
?? sin??? )}+log?(2???? sin??? )
-log?{?? cos??? -(
?? 2
?? )cos??? }+?? (?? sin??? +
?? 2
?? )sin??? ]
or ??? =
-?? 2?? [log?(?? -
?? 2
?? )+log?(2?? sin??? )-
1
2
log?{?? 2
+
?? 4
?? 2
-2?? 2
cos?2?? }]
or ??? =
-?? 4?? [log?(?? -
?? 2
?? ·2?? sin??? )
2
-log?{?? 2
+
?? 4
?? 2
-2?? 2
cos?2?? }]
The stream lines are given by ?? = constant
i.e.
-?? 4?? [log?{4(?? 2
-?? 2
)}sin
2
??? ]-log?{
?? 4
+?? 4
2?? 2
?? 2
cos?2?? ?? 2
}= Constant
or
?? 2
(?? 2
-?? 2
)
2
sin
2
??? ?? 4
+?? 4
-2?? 2
?? 2
cos?2?? ?=?? 2
? (let)
?? 2
{(?? 2
-?? 2
)
2
+2?? 2
?? 2
(1-cos?2?? )}?=?? 2
(?? 2
-?? 2
)sin
2
??? 2?? 2
?? 2
?? 2
(1-cos?2?? )?=(?? 2
-?? 2
)(?? 2
sin
2
??? -?? 2
)
4?? 2
?? 2
?? 2
sin
2
??? ?=(?? 2
-?? 2
)
2
(?? 2
sin?2?? -?? 2
)
7.3 An infinite row of equidistant rectilinear vortices are at a distance a apart. The
vortices are of the same numerical strength ?? but they are alternately of opposite
signe. Find the complex function that determines the velocity potential and the
stream function.
(2011 : 30 Marks)
Solution:
Let the row of vertices be taken along the ?? -axis.
Let the points (0,0),(±2?? ,0),(±4?? ,0),…. have vertices of strength ?? and the points
(±?? ,0),(±3?? ,0) , (±5?? ,0),….. have vortices of strength -?? .
The complete potential of the entire system is given by
?? =
????
2?? [{log??? +log?(?? -2?? )+log?(?? +2?? )+log?(?? -4?? )+log?(?? +4?? )+?.}
?-{log?(?? -?? )+log?(?? +?? )+log?(?? -3?? )+log?(?? +3?? )+?.}]
=
????
2?? log?
?? (?? 2
-2
2
?? 2
)(?? 2
-4
2
?? 2
)…..
(?? 2
-?? 2
)(?? 2
-3
2
?? 2
)…..
=
????
2?? log?
?? 2?? [1-(
?? 2?? )
2
][1-(
?? 4?? )
2
]…..
[1-(
?? ?? )
2
][1-(
?? 3?? )
2
]…..
+?? constant
Page 5
Edurev123
7. Vortex Motion
7.1 In an incompressible fluid, the vorticity at every point is constant in magnitude
and direction; show that the components of velocity ?? ,?? ,?? are solutions of
Laplace equation.
(2010: 12 Marks)
Solution:
Let velocity,
?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
? Vorticity,
???? =?×??
=|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? ?? |
=??ˆ(
??? ??? -
??? ??? )-??ˆ(
??? ??? -
??? ??? )+?? (
??? ??? -
??? ??? )= Constant (given)
??
??? ??? -
??? ??? =0 or
??? ??? =
??? ???
??
?
2
?? ??? 2
=
?
2
?? ??? ???
and
?
2
?? ??? ??? =
?
2
?? ??? 2
(2)
Similarly,
and
??? ??? ?=
??? ??? ?
?
2
?? ??? 2
=
?
2
!
??? ??? (3)
?
2
?? ??? ??? ?=
?
2
?? ??? 2
(4)
Also,
??? ??? -
??? ??? =0?
??? ??? =
??? ???
??
?
2
?? ??? ??? =
?
2
?? ??? 2
and
?
2
?? ??? 2
=
??? ??? ??? (6)
As fluid is incompressible, ? by eqn. of continuity
??? ??? +
??? ??? +
??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? ??? +
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, satisfies Laplace's equation.
In the same way,
?
2
?? ??? ??? +
?
2
?? ??? 2
+
?
2
?? ??? ??? =0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
and
?
2
?? ??? ??? +
?
2
?? ??? ??? +
?
2
?? ??? 2
=0
???
?
2
?? ??? 2
+
?
2
?? ??? 2
+
?
2
?? ??? 2
=0
So, ?? and ?? also satisfy Laplace's equation.
??? ,?? ,?? are solutions of Laplace's equation.
7.2 When a pair of equal and opposite rectilinear vertices are situated in a long
circular cylinder at equal distances from its axis, show that the path of each
vortex is given by the equation
(?? ?? ?????? ??? ?? -?? ?? )=?? ?? ?? ?? ?? ?? ?? ?????? ?? ???
?? being measured from the line through the centre perpendicular to the joint of the
vertices.
(2010 : 30 Marks)
Solution:
Let a pair of equal and opposite vertices of strength +?? and -?? are placed at the point
?? (?? ,?? ) and ?? (?? ,?? ) respectively.
The image consists of
(i) A vertex of strength -?? at an inverse point ?? (
?? 2
?? ,?? ) .
(ii) A vertex of strength +?? at an inverse point ?? (
?? 2
?? ,-?? ) .
The complex potential at any point ?? becomes
?? =
????
2?? log?(?? -?? ?? ????
)-
????
2?? log?{?? -(
?? 2
?? )?? ????
}-
????
2?? log?(?? -?? ?? -????
)+
????
2?? log?{?? -(
?? 2
?? )?? -????
}
The motion of ?? is due to other vertices, thus for the motion ?? , the complex potential at
any point ?? (?? =?? ?? ????
) becomes
or
?? 1
=[-
????
2?? log?{?? -(
?? 2
?? )?? ????
}-
????
2?? log?(?? -?? ?? -????
)-
????
2?? log?{?? -(
?? 2
?? )?? -????
}]
?? -?? ?? ????
?? 1
=-
????
2?? [log?{?? ?? ????
-(
?? 2
?? )?? ????
}log?(?? ?? ????
-?? ?? -????
)-log?{?? ?? ????
-(
?? 2
?? )?? -????
}]
or
or ??? 1
=
-????
2?? [log?{(?? cos??? -(
?? 2
?? )cos??? )+?? (?? sin??? -
?? 2
?? sin??? )}+log?(2???? sin??? )
-log?{?? cos??? -(
?? 2
?? )cos??? }+?? (?? sin??? +
?? 2
?? )sin??? ]
or ??? =
-?? 2?? [log?(?? -
?? 2
?? )+log?(2?? sin??? )-
1
2
log?{?? 2
+
?? 4
?? 2
-2?? 2
cos?2?? }]
or ??? =
-?? 4?? [log?(?? -
?? 2
?? ·2?? sin??? )
2
-log?{?? 2
+
?? 4
?? 2
-2?? 2
cos?2?? }]
The stream lines are given by ?? = constant
i.e.
-?? 4?? [log?{4(?? 2
-?? 2
)}sin
2
??? ]-log?{
?? 4
+?? 4
2?? 2
?? 2
cos?2?? ?? 2
}= Constant
or
?? 2
(?? 2
-?? 2
)
2
sin
2
??? ?? 4
+?? 4
-2?? 2
?? 2
cos?2?? ?=?? 2
? (let)
?? 2
{(?? 2
-?? 2
)
2
+2?? 2
?? 2
(1-cos?2?? )}?=?? 2
(?? 2
-?? 2
)sin
2
??? 2?? 2
?? 2
?? 2
(1-cos?2?? )?=(?? 2
-?? 2
)(?? 2
sin
2
??? -?? 2
)
4?? 2
?? 2
?? 2
sin
2
??? ?=(?? 2
-?? 2
)
2
(?? 2
sin?2?? -?? 2
)
7.3 An infinite row of equidistant rectilinear vortices are at a distance a apart. The
vortices are of the same numerical strength ?? but they are alternately of opposite
signe. Find the complex function that determines the velocity potential and the
stream function.
(2011 : 30 Marks)
Solution:
Let the row of vertices be taken along the ?? -axis.
Let the points (0,0),(±2?? ,0),(±4?? ,0),…. have vertices of strength ?? and the points
(±?? ,0),(±3?? ,0) , (±5?? ,0),….. have vortices of strength -?? .
The complete potential of the entire system is given by
?? =
????
2?? [{log??? +log?(?? -2?? )+log?(?? +2?? )+log?(?? -4?? )+log?(?? +4?? )+?.}
?-{log?(?? -?? )+log?(?? +?? )+log?(?? -3?? )+log?(?? +3?? )+?.}]
=
????
2?? log?
?? (?? 2
-2
2
?? 2
)(?? 2
-4
2
?? 2
)…..
(?? 2
-?? 2
)(?? 2
-3
2
?? 2
)…..
=
????
2?? log?
?? 2?? [1-(
?? 2?? )
2
][1-(
?? 4?? )
2
]…..
[1-(
?? ?? )
2
][1-(
?? 3?? )
2
]…..
+?? constant
which is the desired potential function that determines the velocity potential and stream
function.
From (i),
?? +???? =
????
2?? log?tan?
?? 2?? (?? +???? ) (???? )
???? -???? =-
????
2?? log?tan?
?? 2?? (?? -???? ) (?????? )
Subtracting (iii) from (ii), we have
2???? ?=
????
2?? [log?tan?
?? 2?? (?? +???? )+log?tan?
?? 2?? (?? -???? )]
?? ?=
?? 4?? log?
sin?
?? 2?? (?? +???? )sin?
?? 2?? (?? -???? )
cos?
?? 2?? (?? +???? )cos?
?? 2?? (?? -???? )
?=
?? 4?? log?
cosh?(
????
?? )-cos?(
????
?? )
cosh?(
????
?? )+cos?(
????
?? )
Since the motion of the vortex at the origin is due to other vortices only, the velocity ?? 0
of
the vortex at the origin is given by
?? 0
=-[
?? ????
(
????
2?? log?tan?
????
2?? -
????
2?? log??? )]
?? =0
=-
????
2?? [
sec
2
?(
????
2?? )
tan?(
????
2?? )
×
?? 2?? -
1
2
]
?? =0
=0 (using L'Hospital's Rule)
Hence, the vortex at the origin is at rest. Similarly, it can be shown that the remaining
vortices are also at rest. Thus, we find that the vortex row induces no velocity on itself.
7.4 Prove that the necessary and sufficient conditions that the vortex lines may be
at right angles to stream lines are :
?? ,?? ,?? =?? (
?? ?? ?? ?? ,
?? ?? ?? ?? ,
?? ?? ?? ?? )
where ?? and ?? are functions of ?? ,?? ,?? ,?? .
(2013 : 10 Marks)
Solution:
Streamlines are given by
Read More